UNCOVERING THE RELATIVISTIC FOUNDATION OF LENZ'S LAW IN GALILEAN ELECTROMAGNETIC THEORY

Authors

DOI:

https://doi.org/10.26512/rpf.v9i1.58584

Keywords:

Galilean Electromagnetism. Lenz’s law. Relativity.

Abstract

This paper investigates the origins of Lenzs law within the framework of Galilean Electromagnetism. Its central idea is that electromagnetic theory accommodates two distinct low-speed limits: the electric and magnetic one. Our main result is focused on the latter, where the induction law is valid. We demonstrate that a Galilean boost implies that the only possible linear relationship between ∇ × E and ∂B/∂t is characterized by a minus sign, corresponding to Lenzs law. Thus, we conclude that Lenzs law has a profound origin in the principle of relativity, whether in the classical (Galilean) or relativistic (Lorentz) regimes. Our findings offer a novel perspective on the foundational aspects of electromagnetic theory and its relationship to relativity at low velocities.

References

BELLAC, M. L.; LÉVY-LEBLOND, J. M. Galilean electromagnetism. Il Nuovo Cimento, v. 14, p. 217-233, 1973.

BERREDO-PEIXOTO, G.; HERNANDO, J.; LESCHE, B.; RIZZUTI, B. F. When a series of capacitors is not just capacitors in series. Eur. J. Phys., v. 39, p. 065203, 2018. doi: <https://doi.org/10.1088/1361-6404/aadda5>.

BOHÁ, R.; KOPECKÝ, V.; PRIMAS, J.; MALÍK, M.; SLAVÍK, L. Educational device for demonstrating Lenzs law. Phys. Educ., v. 60, p. 015012, 2025. doi: <https://doi.org/10.1088/1361-6552/ad8e27>.

FILHO, O. L. S.; FERREIRA, M. Invariância das equações de Maxwell por transformações de Lorentz: pontes conceituais via derivação como alternativa ao cálculo tensorial. Rev. Bras. Ensino Fís., v. 45, p. e20230231, 2023. doi: <https://doi.org/10.1590/1806-9126-RBEF-2023-0231>.

FONTES, D. T. M.; RODRIGUES, A. M. Faraday’s law low-cost experiment without permanent magnets. The Phys. Teach., v. 59, p. 345, 2021. doi: <https://doi.org/10.1119/10.0004884>.

GAIO, L. M.; RIZZUTI, B. F. A categorical view on the principle of relativity. Reports on Mathematical Physics, v. 92, p. 291-307, 2023. doi: <https://doi.org/10.1016/S0034-4877(23)00081-2>.

HILL, S. E. Rephrasing Faraday’s law. The Physics Teacher, v. 48, p. 410-412, 2010. doi: <https://doi.org/10.1119/1.3479724>.

JACKSON, J. D. Classical Electrodynamics. 3. ed. New Jersey: John Wiley & Sons, Inc., 1999.

LENZ, E. Über die Bestimmung der Richtung der durch elektrodynamische Vertheilung erregten galvanischen Ströme. Annalen der Physik und Chemie, v. 107, p. 483-494, 1834. doi: <https://doi.org/10.1002/andp.18341073103>.

LESCHE, B. Notas de aula - Física 3. 2025. Disponível em: <https://www2.ufjf.br/fisica/wp-content/uploads/sites/427/2013/10/FIII-08-01-A-lei-de-indu%C3%A7%C3%A3o-de-Faraday.pdf>. Acesso em: 28 abr. 2025.

MONTIGNY, M.; ROUSSEAUX, G. On the electrodynamics of moving bodies at low velocities. Eur. J. Phys., v. 27, p. 755-768, 2006. doi: <https://doi.org/10.1088/0143-0807/27/4/007>.

MONTIGNY, M.; ROUSSEAUX, G. On some applications of galilean electrodynamics of moving bodies. Am. J. Phys., v. 75, p. 984-992, 2007. doi: <https://doi.org/10.1119/1.2772289>.

MORAES, J. T.; RIZZUTI, B. F.; GONÇALVES, B. Instructional experiment on Lenzs law. Quarks, v. 4, p. 61-80, 2022.

ROCHA, B. F. R. A.; MOTA, D. Transformações de Galileu e de Lorentz: um estudo via teoria de grupos. Rev. Bras. Ensino Fís., v. 35, p. 4304, 2013. doi: <https://doi.org/10.1590/S1806-11172013000400004>.

RODRIGUES, T. B. S. F.; RIZZUTI, B. F. On the connection between Lenzs law and relativity. Eur. J. Phys., v. 44, p. 065204, 2023. doi: <https://doi.org/10.1088/1361-6404/acef1a>.

ROUSSEAUX, G. Forty years of galilean electromagnetism (1973-2013). Eur. Phys. J. Plus, v. 128, p. 81, 2013. doi: <https://doi.org/10.1140/epjp/i2013-13081-5>.

SANTIAGO, A. J.; MACHADO, A. F.; SILVA, C. E.; PINHEIRO, L. C; TAVARES Jr, A. D. Construindo um motor elétrico de corrente contínua como aprendizagem ativa da lei de Faraday. Revista do Professor de Física, v. 2, n. 2, p. 10-26, 2018. doi: <https://doi.org/10.26512/rpf.v2i2.12075>

SANTOS, E. S.; MONTIGNY, M.; KHANNA, F. C., SANTANA, A. E. Galilean covariant lagrangian models. J. Phys. A: Math. Gen., v. 37, p. 97719789, 2004. doi: <https://doi.org/10.1088/0305-4470/37/41/011>.

SEXL, R. U.; URBANTKE, H. K. Relativity, Groups, Particles: Special Relativity and Relativistic Symmetry in Field and Particle Physics. Vienna: Springer-Verlag, 2002.

SILVA, F. U. da; LUNA, C. B. B. Engajando estudantes com práticas experimentais: o caso da mini bobina de Tesla. Revista do Professor de Física, v. 9, p. 498-512, 2025. doi.: <https://doi.org/10.26512/rpf.v9i1.57305>

Published

2025-09-24

How to Cite

UNCOVERING THE RELATIVISTIC FOUNDATION OF LENZ’S LAW IN GALILEAN ELECTROMAGNETIC THEORY. Journal of the Physics Teacher, [S. l.], v. 9, n. 1, p. 613–626, 2025. DOI: 10.26512/rpf.v9i1.58584. Disponível em: https://periodicostestes.bce.unb.br/index.php/rpf/article/view/58584. Acesso em: 15 jan. 2026.