THE INVARIANCE OF THE ELECTROMAGNETIC WAVE EQUATION UNDER LORENTZ TRANSFORMATIONS

Authors

DOI:

https://doi.org/10.26512/rpf.v8i3.48265

Keywords:

Special Relativity. Lorentz Transformations. Galileo Transformations. Electromagnetic Wave Equation. Galileo and Lorentz Invariance.

Abstract

The origin of the theory of special relativity had as its main motivation the problem of incompatibility between Newtonian mechanics and Maxwell's electromagnetism. That is, the electromagnetic wave equations change shape when considering the well-known Galilean transformations. This is a problem, as physics cannot be different when moving from one frame of reference to another. This hindrance is solved when relativistic mechanics is proposed, based on Lorentz transformations. In this work we will show in detail how the electromagnetic wave equation in its general form is invariant under Lorentz transformations, that is, we will show that the form of the d’Alembertian operator does not change its form even without previously knowing how the fields transform. Before that, however, we reserve a section to demonstrate that such an equation varies its structure when Galilean transformations are applied. Despite the historical importance of these facts, the derivations shown in this work are not present in the main textbooks of Modern Physics or Special Relativity, which will allow them to serve as didactic material for Physics students.                  

References

BREHM, J. J.; MULLIN, W. J. Introduction to the structure of matter: a course in modern physics. New York: John Wiley and Sons, 1989.

CARUSO, F.; OGURI, V. Física Moderna: Origens Clássicas e Fundamentos Quânticos. Rio de Janeiro: Elsevier, 2006.

FELIPE, J.; VELOSO, V. Um Estudo sobre a Equação da Onda Eletromagnética e a sua (não) Invariância sob Transformações de Galileu (Lorentz). Revista do Professor de Física v.6, n. 3, p. 101-118, 2022.

GRIFFITHS, D. J. Eletrodinâmica. 3a ed. São Paulo: Pearson, 2011.

HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de Física: Mecânica. 10a ed. Rio de Janeiro: LTC, 2016.

JACKSON, J. D. Classical Electrodynamics. 3a ed. New Jersey: John Wiley & Sons, 1998.

NUSSENSZVEIG, H. M. Curso de Física Básica 2: Fluidos, Oscilações e Ondas, Calor. 5a ed. São Paulo: Blucher, 2014.

PIRES, A. Evolução das ideias da física. 2a ed. São Paulo: Editora Livraria da Física, 2011.

RESNICK, R. Introdução à Relatividade Especial. São Paulo: Edusp, 1971.

SILVA FILHO, O. L.; FERREIRA, M. Invariância das equações de Maxwell por transformações de Lorentz: pontes conceituais via derivação como alternativa ao cálculo tensorial. Revista Brasileira de Ensino de Física v. 45, p. e20230231, 2023.

STEWART, J. Cálculo: volume 2. 7a ed. São Paulo: Cengage Learning, 2013.

SYMON, K. R. Mecânica. Rio de Janeiro: Editora Campus, 1996.

TIPLER, P. A.; LLEWELLYN, R. A. Física Moderna. 6a ed. Rio de Janeiro: LTC, 2014.

Published

2025-01-03

How to Cite

THE INVARIANCE OF THE ELECTROMAGNETIC WAVE EQUATION UNDER LORENTZ TRANSFORMATIONS. Journal of the Physics Teacher, [S. l.], v. 8, n. 3, p. 94–105, 2025. DOI: 10.26512/rpf.v8i3.48265. Disponível em: https://periodicostestes.bce.unb.br/index.php/rpf/article/view/48265. Acesso em: 22 feb. 2025.