COMPARISON OF THE BEHAVIOR OF RADIOACTIVE DECAY THROUGH POLYHEDRONS THROWINGS

Authors

  • C. V. Bauman Bertti Laboratório Ciência Impressa 3D (Ci3D), Universidade Federal do Rio Grande (FURG)
  • A. N. Silveira Mestrado Profissional em Ensino de Física – Polo 21 FURG (MNPEF – Polo 21)
  • A. G. Dytz Instituto de Matemática Estatística e Física (IMEF), Universidade Federal do Rio Grande (FURG)
  • E. Arashiro Instituto de Matemática Estatística e Física (IMEF), Universidade Federal do Rio Grande (FURG)

DOI:

https://doi.org/10.26512/rpf.v1i1.45925

Keywords:

simulation with polyhedra; half-life; radioactivity.

Abstract

Modern physics is part of the High School physics curriculum, but it is rarely covered. Thus, subjects such as radioactivity and radioactive decay are rarely worked in the classroom, and more difficult with associated practice, since radioactive materials are harmful and follow specific legislation for their use. In order to try to overcome this deficiency and provide a practice, a simulation of the radioactive decay curves was performed using sets of polyhedra (physical or virtual), where each set is formed with polyhedra with a certain number of faces. When an atom emits some type of radiation, it is said that the chemical element has undergone radioactive decay and this process, in addition to being a transmutation of matter, is a spontaneous and completely random process. The average time in which half of the atoms in a given sample decay, forming another chemical element, known as the half-life time, is specific to each radioactive chemical element and polyhedra with different numbers of faces can be used to simulate this condition. The probability of a specific atom decaying after a certain period of time can be simulated by comparing the polyhedrons throwings by subtracting the number of polyhedra as a function of one of the chosen faces.

References

CNEN - Comissão Nacional de Energia Nuclear. Diretrizes Básicas de Proteção Radiológica. CNEN NN 3.01 (Resolução CNEN 164/14); Rio de Janeiro: 2014.

CHERNOBYL. Direção: Johan Renck. Produção: Craig Mazin, Carolyn Strauss, Jane Featherstone. HBO. Estados Unidos, Reino Unido, 2019. Acesso em: 25 out. 2022.

KAPLAN, I. Física Nuclear. 2ª ed., Guanabara Dois: Rio de Janeiro, 1983, 633p

MESQUITA, D. G.; DYTZ, A. G. Simulador de Medidor de Atividade para Práticas de Ensino. Revista Brasileira de Física Médica, v. 13, p. 53-59, 2019. https://doi.org/10.29384/rbfm.2019.v13.n3.p53-59.

RUTHERFORD, E., SODDY, F. The cause and nature of radioactivity. Philosophical Magazine, v. 4, p. 370-396, 1902.

SciDAVis. Versão 2.9.2. Miquel Garriga, Arun Narayanankutty, Dmitriy Pozitron, Russell Standish, 2022.

VYGOTSKYI, L. S. A formação social da mente: o desenvolvimento dos processos psicológicos superiores. Trad. José Cipolla Neto; Luís Silveira Menna Barreto; Solange Castro Afeche. 7.ed. São Paulo: Martins Fontes, [1984] 2007.

Published

2022-12-07

Issue

Section

Anals of the Integrated Meeting in Physics Teaching

How to Cite

COMPARISON OF THE BEHAVIOR OF RADIOACTIVE DECAY THROUGH POLYHEDRONS THROWINGS. Journal of the Physics Teacher, [S. l.], v. 6, n. Especial, p. 27–34, 2022. DOI: 10.26512/rpf.v1i1.45925. Disponível em: https://periodicostestes.bce.unb.br/index.php/rpf/article/view/45925. Acesso em: 18 jan. 2025.