Computational aspects on numerical inversion of the Laplace Transform applied to transport problem

Authors

  • Juciara Alves Ferreira Universidade Federal do Rio Grande - FURG
  • J.C.R. Calixto FURG
  • E. konflanz FURG
  • B.D.A. Rodriguez FURG
  • J.P. Filho FURG

Keywords:

Transformada de Laplace; Métodos Numéricos; Problema de Condução de Calor.

Abstract

 The use of numerical inversion approaches becomes necessary when the Laplace Transform cannot be inverted analytically by usual techniques. However, the numerical inverse Laplace transform is generally an ill posed problem, and there is no universal method which works well for all problems. In this study, we selected four commonly used numerical inverse Laplace transform methods to evaluate their performance in dealing with heat conduction problems. This work explored the use of four methods for the numerical inversion of Laplace transform, in order to evaluate its performance in solving transient one-dimensional heat conduction problems: the Stehfest, the Fixed-Talbot, the Fourier Series and the Zakian methods. We specifically investigated, in this process, each method's optimal free parameters and its efficiency in elementary functions treatment. In this process, the Talbot-Fixed method proved to be efficient for the inversion of both functions with oscillatory behavior and involving decreasing exponentials. Specifically, for the latter class of functions, the methods of Stehfest and Zakian provided satisfactory results. In the study of the heat conduction problem, the four methods presented good performance, and the Talbot-Fixo presented better results (less absolute error) when compared to the others.

 

References

Abate, J.; Valkó, P. P. Multi-precision Laplace transform inversion. Int. J. Numer. Meth. Eng. 2004, 60, 979-993. https://doi.org/10.1002/nme.995

Cohen, A. M. Numerical Methods for Laplace Transform Inversion, 1st ed.; Springer Science+Business Media: LLC New York, United States, 2007; pp. 1-251.

Costa, C. P. da, Pérez-Fernández, L. D., Rui, K., Bravo-Castillero, J. Combinação do ADMM com Homogeneização Matemática na Modelagem da Dispersão de Poluentes na Atmosfera. Revista Brasileira de Meteorologia 2018, 33(2), 329-335. https://dx.doi.org/10.1590/0102-7786332014

Crump, K. S. Numerical inversion of Laplace transforms using a Fourier series approximation. Journal of the Association for Computing Machinery . 1976, 23(1), 89-96. https://doi.org/10.1145/321921.321931

D’amore, L.; Campagna, R.; Galletti, A.; Marcellino, L.; Murli, A. A smoothing spline that approximates Laplace transform functions only known on measurements on the real axis. Inverse Problems, 2012, 28(2), 1-37. https://doi.org/10.1088/0266-5611/28/2/025007

Davies, B.; Martin, B. Numerical Inversion oh the Laplace Transform: a Survey and Comparison of Methods. Journal of Computational Physics 1979, 33, 1-32.

Dubner, H.; Abate, J. Numerical Inversion of Laplace Transform by relating them to the Finite Fourier Cosine Transform. Journal of the ACM 1968, 15, 115”“123. https://doi.org/10.1145/321439.321446

Duffy, D. G. On the numerical inversion of Laplace transforms: comparison of three new methods on characteristic problems from applications. ACM Transactions on Mathematical Software 1993, 19(3), 333-359. https://doi.org/10.1145/155743.155788

Durbin, F. Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate's method. The Computer Journal 1974, 17(4), 371-376. https://doi.org/10.1093/comjnl/17.4.371

Halsted, D. J.; Brown D. E. Zakian's technique for inverting Laplace transforms. The Chemical Engineering Journal 1972, 3, 312-313. https://doi.org/10.1016/0300-9467(72)85037-8

Junqueira, S. L. de M. Aplicação da transformada de Laplace ao problema inverso da condução do calor. Dissertação de Mestrado, Universidade Estadual de Campinas, Campinas, 1990.

Pilatti, C.; Rodriguez, B. D. do A.; Prolo Filho, J. F. Performance Analysis of Stehfest and Power Series Expansion Methods for Solution to Diffusive and Advective Transport Problems. Defect and Diffusion Forum 2019, 396, 99-108. https://doi.org/10.4028/www.scientific.net/ddf.396.99

Moench, A. F.; Ogata, A. A Numerical Inversion of the Laplace Transform Solution to Radial Dispersion in a Porous Medium. Water Resources Research 1981, 17(1), 250-252. https://doi.org/10.1029/WR017i001p00250

Moreira, D. M.; Moraes, A. C.; Goulart, A. G.; Albuquerque, T. T. A. A contribution to solve the atmospheric diffusion equation with eddy diffusivity depending on source distance. Atmospheric Environment 2014, 83, 254-259. https://doi.org/10.1016/j.atmosenv.2013.10.045

Spiegel. M. R. Manual de fórmulas e tabelas matemáticas, 3rd ed.; Bookman, Porto Alegre, 2012.

Segatto, C. F.; Tomaschewski, F. K.; Barros, R. C.; Vilhena, M. T. On the solution of the SN multigroup kinetics equations in multilayer slabs. Annals of Nuclear Energy 2017, 104 ,229-236. https://doi.org/10.1016/j.anucene.2017.02.016

Stehfest, H. Algorithm 368: Numerical Inversion of Laplace transform[D5]. Communications of the ACM 1979, 13, 47-49. https://doi.org/10.1145/361953.361969

Talbot, A. The accurate numerical inversion of Laplace transforms. IMA Journal of Applied Mathematics 1979, 23(1), 97-120. https://doi.org/10.1093/imamat/23.1.97

Valkó, P. P.; Abate, J. Comparison of sequence accelerators for the Gaver method of numerical Laplace transform inversion. Computers and Mathematics with Applications 2004, 48(3-4), 629-636. https://doi.org/10.1016/j.camwa.2002.10.017

Wang, Q.; Zhan, H. On different numerical inverse Laplace methods for solute transport problems. Advances in Water Resources 2015, 75, 80-92. https://doi.org/10.1016/j.advwatres.2014.11.001

Zakian, V. Numerical inversion of Laplace transform. Electronics Letters 1969, 5(6), 120-121.

Zhang, W.; Cui, Y.; Jiang, R.; Xu, J.; Qiao, X.; Jiang, Y.; Zhang, H.; Wang, X. Production performance analysis for horizontal wells in gas condensate reservoir using three-region model. Journal of Natural Gas Science and Engineering 2019, 61, 226-236. https://doi.org/10.1016/j.jngse.2018.11.004

Zongxiao, R.; Xiaodong, W.; Guoqing, H.; Lingyan, L.; Xiaujun, W.; Guanghui, Z.; Hun, L.; Jiaming, Z.; Xianwei, Z. Transient pressure behavior of multi-stage fractured horizontal wells in stress-sensitive tight oil reservoirs. Journal of Petroleum Science and Engineering 2017, 157, 1197-1208. https://doi.org/10.1016/j.petrol.2017.07.073

Published

2020-12-31

How to Cite

Computational aspects on numerical inversion of the Laplace Transform applied to transport problem. (2020). Revista Interdisciplinar De Pesquisa Em Engenharia, 6(2), 139-152. https://periodicostestes.bce.unb.br/index.php/ripe/article/view/35142