Numerical analysis of wave propagation and vibration of overhead transmission cable
Keywords:
Overhead transmission cable; Flexural wave propagation; Wave Finite Element; Spectral transfer matrix; Spectral element methodAbstract
This paper presents a comparison of numerical methods used to model and analyse the vibration of overhead transmission line conductor. The cable vibration signature is expressed through the frequency response function (FRF) and the flexural wave propagation via dispersion diagram. The cable is modelled under the numerical background of the finite element, spectral element, spectral transfer matrix, and wave finite element methods. Efficacy, accuracy and computational effort to estimate the FRF and dispersion diagram results demonstrate the advantage and limitation of each technique. It is recommended to analyse the vibrations of the systems in different configurations of initial and boundary conditions because some initial condition likewise tensile force, changes the dynamic response and the type of waves. The numerical analysis investigates the natural frequency, mode shape and flexural waves estimated from the four methods for different tensile force and boundary condition.
References
B.R. Mace, D. Duhamel, M.J. Brennan, L. Hinke, Finite element prediction of wave motion in structural waveguides, Journal of the Acoustical Society of America 117 (5) (2005) 2835”“2843, http://dx.doi.org/10.1121/1.1887126.
B. R. Mace, E. Manconi, Modelling wave propagation in two-dimensional structures using finite element analysis, Journal of Sound and Vibration, vol. 318, no. 45, (2008), pp. 884 902. doi: https://doi.org/10.1016/j.jsv.2008.04.039.
D. Duhamel, B. Mace,M. Brennan, Finite element analysis of the vibrations of waveguides and periodic structures, Journal of Sound and Vibration, vol. 294, no. 12, (2006), pp. 205 220. doi: https://doi.org/10.1016/j.jsv.2005.11.014.
Dutkiewicz, M.; Machado, M. R.Dynamic Response of Overhead Transmission Line in Turbulent Wind Flow with Application of the Spectral Element Method. IOP Conference Series: Materials Science and Engineering. , v.471, p.052031 , (2019.b)
Dutkiewicz, M.; Machado, M.R. Measurements in Situ and Spectral Analysis of Wind Flow Effects on Overhead Transmission Lines. Sound and Vibration. , v.53, p.161 - 175, (2019.b)
Dutkiewicz, M; Machado, M.R.Spectral Approach in Vibrations of Overhead Transmission Lines. IOP Conference Series: Materials Science and Engineering. , v.471, p.052029 - , (2019.a)
Dutkiewicz, M.; Machado, M. R. Spectral element method in the analysis of vibrations of overhead transmission line in damping environment. Structural Engineering and Mechanics, v. 71, p. 291-303, (2019.d)
Fu, X.; Li, H. N. Dynamic analysis of transmission tower-line system subjected to wind and rain loads. Journal of Wind Engineering and Industrial Aerodynamics, Elsevier, v. 157, p. 95”“103, (2016).
Lee U. Vibration analysis of one-dimensional structures using the spectral transfer matrix method. Eng Struct (2000), 22:681”“90. doi: https://doi.org/ 10.1016/s0141-0296
Li, X. et al. Probabilistic capacity assessment of single circuit transmission tower-line system subjected to strong winds. Engineering Structures, Elsevier, v. 175, n. July, p. 517”“530, 2018. ISSN 18737323
Machado, M.R.; Dutkiewicz, M.; Matt, C.F.T.; Castello, D.A. Spectral model and experimental validation of hysteretic and aerodynamic damping in dynamic analysis of overhead transmission conductor. Mechanical Systems and Signal Processing. v.136, p.106483 - , (2020). doi: https://doi.org/10.1016/j.ymssp.2019.106483
Mencik, J.-M., Approche numerique pour la propagation multi-modale guidee, Université Francois Rabelais de Tours (2008).
Rao, S. S., Mechanical Vibrations, 6th Ed., (2018), p.778.
Xiao,Y., Wen, J. , Wen, X.Longitudinal wave band gaps in metamaterial-based elastic rods containing multi-degree-of-freedom resonators, New Journal of Physics, vol. 14, no. 3, (2012), p. 033042.
S. Bischoff, C. Schaal, L. Gaul, Efficient wave scattering analysis for damaged cylindrical waveguides, Journalof Sound and Vibration 333 (18) (2014) 4203”“4213.
C. Schaal, S. Bischoff, L. Gaul, Analysis of wave propagation in periodic 3d waveguides, Mech. Syst. Signal Process. 40 (2) (2013) 691”“700.
O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, Butterworth-Heinemann, 2000.
U. Lee, Spectral Element Method in Structural Dynamics, BInha University Press, 2004.
J.F. Doyle, Wave Propagation in Structures, Springer Verlag, New York, 1997.
J.-M. Mencik and M.N. Ichchou, Multi-mode propagation and diffusion in structures through finite elements, European Journal of Mechanics - A/Solids, 24(5), (2005), 877-898,
doi: http://dx.doi.org/10.1016/j.euromechsol.2005.05.004 .
P. B. Silva, J.-M. Mencik, J. R. Arruda, On the Forced Harmonic Response of Coupled Systems via a WFE-Based Super Element Approach, Proceedings of ISMA 2014, (2014), 1”“13.
W. Zhong, F. Williams, On the direct solution of wave propagation for repetitive structures, Journal of Sound and Vibration, 181(3), (1995), 485”“501, doi:http://dx.doi.org/10.1006/jsvi.1995.0153.
Shi X, Mak C-M. Sound attenuation of a periodic array of micro-perforated tube mufflers. Applied Acoustics (2017);115, doi: http://dx.doi.org/10.1016/j.apacoust.2016.08.017
M. R. Machado, M. Dutkiewicz, C. F. T. Matt, D. A. Castello, Spectral model and experimental validation of hysteretic and aerodynamic damping in dynamic analysis of overhead transmission conductor, Mechanical Systems and Signal Processing, 136, (2020), 106483, doi: https://doi.org/10.1016/j.ymssp.2019.106483
E.D. Nobrega, F. Gautier, A. Pelat, J. M. C. Dos Santos, Vibration band gaps for elastic metamaterial rods using wave finite element method, Mechanical Systems and Signal Processing, 79, (2016), 192”“202. doi:http://dx.doi.org/10.1016/j.ymssp.2016.02.059
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Revista Interdisciplinar de Pesquisa em Engenharia

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Given the public access policy of the journal, the use of the published texts is free, with the obligation of recognizing the original authorship and the first publication in this journal. The authors of the published contributions are entirely and exclusively responsible for their contents.
1. The authors authorize the publication of the article in this journal.
2. The authors guarantee that the contribution is original, and take full responsibility for its content in case of impugnation by third parties.
3. The authors guarantee that the contribution is not under evaluation in another journal.
4. The authors keep the copyright and convey to the journal the right of first publication, the work being licensed under a Creative Commons Attribution License-BY.
5. The authors are allowed and stimulated to publicize and distribute their work on-line after the publication in the journal.
6. The authors of the approved works authorize the journal to distribute their content, after publication, for reproduction in content indexes, virtual libraries and similars.
7. The editors reserve the right to make adjustments to the text and to adequate the article to the editorial rules of the journal.







