Numerical analysis of wave propagation and vibration of overhead transmission cable

Autores

Palavras-chave:

Overhead transmission cable; Flexural wave propagation; Wave Finite Element; Spectral transfer matrix; Spectral element method.

Resumo

This paper presents a comparison of numerical methods used to model and analyse the vibration of
overhead transmission line conductor. The cable vibration signature is expressed through the frequency response
function (FRF) and the flexural wave propagation via dispersion diagram. The cable is modelled under the numerical
background of the finite element, spectral element, spectral transfer matrix, and wave finite element methods.
Efficacy, accuracy and computational effort to estimate the FRF and dispersion diagram results demonstrate the
advantage and limitation of each technique. It is recommended to analyse the vibrations of the systems in different
configurations of initial and boundary conditions because some initial condition likewise tensile force, changes the
dynamic response and the type of waves. The numerical analysis investigates the natural frequency, mode shape and
flexural waves estimated from the four methods for different tensile force and boundary condition.

Referências

B.R. Mace, D. Duhamel, M.J. Brennan, L. Hinke, Finite element prediction of wave motion in structural waveguides, Journal of the Acoustical Society of America 117 (5) (2005) 2835”“2843, http://dx.doi.org/10.1121/1.1887126.

B. R. Mace, E. Manconi, Modelling wave propagation in two-dimensional structures using finite element analysis, Journal of Sound and Vibration, vol. 318, no. 45, (2008), pp. 884 902. doi: https://doi.org/10.1016/j.jsv.2008.04.039.

D. Duhamel, B. Mace,M. Brennan, Finite element analysis of the vibrations of waveguides and periodic structures, Journal of Sound and Vibration, vol. 294, no. 12, (2006), pp. 205 220. doi: https://doi.org/10.1016/j.jsv.2005.11.014.

Dutkiewicz, M.; Machado, M. R.Dynamic Response of Overhead Transmission Line in Turbulent Wind Flow with Application of the Spectral Element Method. IOP Conference Series: Materials Science and Engineering. , v.471, p.052031 , (2019.b)

Dutkiewicz, M.; Machado, M.R. Measurements in Situ and Spectral Analysis of Wind Flow Effects on Overhead Transmission Lines. Sound and Vibration. , v.53, p.161 - 175, (2019.b)

Dutkiewicz, M; Machado, M.R.Spectral Approach in Vibrations of Overhead Transmission Lines. IOP Conference Series: Materials Science and Engineering. , v.471, p.052029 - , (2019.a)

Dutkiewicz, M.; Machado, M. R. Spectral element method in the analysis of vibrations of overhead transmission line in damping environment. Structural Engineering and Mechanics, v. 71, p. 291-303, (2019.d)

Fu, X.; Li, H. N. Dynamic analysis of transmission tower-line system subjected to wind and rain loads. Journal of Wind Engineering and Industrial Aerodynamics, Elsevier, v. 157, p. 95”“103, (2016).

Lee U. Vibration analysis of one-dimensional structures using the spectral transfer matrix method. Eng Struct (2000), 22:681”“90. doi: https://doi.org/ 10.1016/s0141-0296

Li, X. et al. Probabilistic capacity assessment of single circuit transmission tower-line system subjected to strong winds. Engineering Structures, Elsevier, v. 175, n. July, p. 517”“530, 2018. ISSN 18737323

Machado, M.R.; Dutkiewicz, M.; Matt, C.F.T.; Castello, D.A. Spectral model and experimental validation of hysteretic and aerodynamic damping in dynamic analysis of overhead transmission conductor. Mechanical Systems and Signal Processing. v.136, p.106483 - , (2020). doi: https://doi.org/10.1016/j.ymssp.2019.106483

Mencik, J.-M., Approche numerique pour la propagation multi-modale guidee, Université Francois Rabelais de Tours (2008).

Rao, S. S., Mechanical Vibrations, 6th Ed., (2018), p.778.

Xiao,Y., Wen, J. , Wen, X.Longitudinal wave band gaps in metamaterial-based elastic rods containing multi-degree-of-freedom resonators, New Journal of Physics, vol. 14, no. 3, (2012), p. 033042.

S. Bischoff, C. Schaal, L. Gaul, Efficient wave scattering analysis for damaged cylindrical waveguides, Journalof Sound and Vibration 333 (18) (2014) 4203”“4213.

C. Schaal, S. Bischoff, L. Gaul, Analysis of wave propagation in periodic 3d waveguides, Mech. Syst. Signal Process. 40 (2) (2013) 691”“700.

O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, Butterworth-Heinemann, 2000.

U. Lee, Spectral Element Method in Structural Dynamics, BInha University Press, 2004.

J.F. Doyle, Wave Propagation in Structures, Springer Verlag, New York, 1997.

J.-M. Mencik and M.N. Ichchou, Multi-mode propagation and diffusion in structures through finite elements, European Journal of Mechanics - A/Solids, 24(5), (2005), 877-898,

doi: http://dx.doi.org/10.1016/j.euromechsol.2005.05.004 .

P. B. Silva, J.-M. Mencik, J. R. Arruda, On the Forced Harmonic Response of Coupled Systems via a WFE-Based Super Element Approach, Proceedings of ISMA 2014, (2014), 1”“13.

W. Zhong, F. Williams, On the direct solution of wave propagation for repetitive structures, Journal of Sound and Vibration, 181(3), (1995), 485”“501, doi:http://dx.doi.org/10.1006/jsvi.1995.0153.

Shi X, Mak C-M. Sound attenuation of a periodic array of micro-perforated tube mufflers. Applied Acoustics (2017);115, doi: http://dx.doi.org/10.1016/j.apacoust.2016.08.017

M. R. Machado, M. Dutkiewicz, C. F. T. Matt, D. A. Castello, Spectral model and experimental validation of hysteretic and aerodynamic damping in dynamic analysis of overhead transmission conductor, Mechanical Systems and Signal Processing, 136, (2020), 106483, doi: https://doi.org/10.1016/j.ymssp.2019.106483

E.D. Nobrega, F. Gautier, A. Pelat, J. M. C. Dos Santos, Vibration band gaps for elastic metamaterial rods using wave finite element method, Mechanical Systems and Signal Processing, 79, (2016), 192”“202. doi:http://dx.doi.org/10.1016/j.ymssp.2016.02.059

Downloads

Publicado

2020-09-02

Como Citar

Numerical analysis of wave propagation and vibration of overhead transmission cable. (2020). Revista Interdisciplinar De Pesquisa Em Engenharia, 6(1), 18-27. https://periodicostestes.bce.unb.br/index.php/ripe/article/view/33396