Biochemical changes in corn leaves exposed to herbivory by Spodoptera frugiperda (Lepidoptera: Noctuidae) and treated with dynamized high dilutions
DOI:
https://doi.org/10.33240/rba.v21i1.58984Keywords:
Homeopathy, Fall armyworm, Resistance induction, NosodeAbstract
The fall armyworm, Spodoptera frugiperda, causes significant losses in maize biomass and grain production. High dynamized dilutions can act as substances that induce plant resistance to insects. This study evaluated the biochemical changes in maize leaves treated with high dynamized dilutions prepared from S. frugiperda larvae at 6, 12, 15, and 18 CH (Centesimal Hahnemannian) potencies and exposed to S. frugiperda herbivory. Maize plants received the treatments via irrigation and, at the V3 stage (three leaves), were infested with 4th-instar larvae. Leaves were collected before and after herbivory to assess protein content, guaiacol peroxidase (POD) activity, and phenylalanine ammonia-lyase (PAL). Seven days after the onset of herbivory, the treated plants showed increased protein concentrations and POD activity. Thus, it was observed that the dynamized dilutions prepared from S. frugiperda larvae aid in inducing resistance in maize plants and, consequently, in reducing the damage caused by S. frugiperda.
References
ALI, Qurban et al. Antioxidant production promotes defense mechanism and different gene expression level in Zeamays under abiotic stress. Scientific Reports v. 14, n. 1, p. 1–14 , 1 dez. 2024. Disponível em: https://www.nature.com/articles/s41598-024-57939-6 Acesso em: 9 jul. 2025.
ANDRADE, Fernanda M. Coutinho De; CASALI, Vicente W. Dias. Homeopatia, agroecologia e sustentabilidade. Revista Brasileira de Agroecologia, v. 6, n. 1, p. 49–56 , 2011.
BATOOL, Raufa et al. Myco-Synergism Boosts Herbivory-Induced Maize Defense by Triggering Antioxidants and Phytohormone Signaling. Frontiers in Plant Science v. 13, p. 790504 , 17 fev. 2022. Disponível em: www.frontiersin.org. Acesso em: 9 jul. 2025.
BOFF, Pedro; VERDI, Rovier; FAEDO, Leonardo F. Homeopathy applied to agriculture: theoretical and practical considerations with examples from Brazil. In: WRIGHT, Julia (Org.). Subtle agroecologies: farming with the hidden half of nature. 1st ed. ed. London (UK): CRC Press, 2021. p. 145–154.
BRADFORD, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry v. 72, n. 1–2, p. 248–254 , 1976.
BRASIL. Farmacopéia homeopática brasileira. 3. ed. São Paulo, SP: Atheneu, 2011. 364 p.
CHABOUSSOU, Francis. Plantas doentes pelo uso de agrotóxicos: novas bases de uma prevenção contra doenças e parasitas: a teoria da trofobiose. São Paulo, SP: Expressão Popular, 2006. 320 p.
CHAI, Pengpei et al. Genome-Wide Characterization of the Phenylalanine Ammonia-Lyase Gene Family and Their Potential Roles in Response to Aspergillus flavus L. Infection in Cultivated Peanut (Arachis hypogaea L.). Genes v. 15, n. 3 , 1 mar. 2024. Disponível em: https://pubmed.ncbi.nlm.nih.gov/38540324/. Acesso em: 9 jul. 2025.
CORDOBA CORREOSO, Claudio et al. Sustainability Assessment of Family Agricultural Properties: The Importance of Homeopathy. Sustainability (Switzerland) v. 14, n. 10, 1º mai. 2022.
COSTA, Eduardo Neves et al. Above- and belowground resistance in Brazilian maize varieties under attack of Spodoptera frugiperda and Diabrotica speciosa. Entomologia Experimentalis et Applicata v. 170, n. 8, p. 718–726 , 1 ago. 2022.
DEBONI, Tarita C. et al. Actividad peroxidasa y concentración de proteínas en Phaseolus vulgaris l. tratado con preparaciones homeopáticas. Research, Society and Development v. 10, n. 9, p. e59110918457 , 2 ago. 2021.
DUMAS, Pascaline et al. Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: two host strains or two distinct species? Genetica v. 143, n. 3, p. 305–316 , 2015.1070901598.
FAEDO, Leonardo et al. The use of mineral dynamised high dilutions for natural plant biostimulation; effects on plant growth, crop production, fruit quality, pest and disease incidence in agroecological strawberry cultivation. Biological Agriculture and Horticulture v. 40, n. 4, p. 267–287 , 2024.
GREENE, G. L.; LEPPLA, N. C.; DICKERSON, W. A. Velvetbean caterpillar: a rearing procedure and artificial medium. Journal of Economic Entomology v. 69, n. 4, p. 487–488 , 1976.
JUÁREZ, M. L. et al. Population structure of Spodoptera frugiperda maize and rice host forms in South America: Are they host strains? Entomologia Experimentalis et Applicata v. 152, n. 3, p. 182–199, 2014.
KARBAN, Richard. The ecology and evolution of induced resistance against herbivores. Functional Ecology v. 25, n. 2, p. 339–347 , 2011.
LATEF, Arafat A. H. A. et al. Impact of the Static Magnetic Field on Growth, Pigments, Osmolytes, Nitric Oxide, Hydrogen Sulfide, Phenylalanine Ammonia-Lyase Activity, Antioxidant Defense System, and Yield in Lettuce. Biology 2020, Vol. 9, Page 172 v. 9, n. 7, p. 172 , 17 jul. 2020. Disponível em: https://www.mdpi.com/2079-7737/9/7/172/htm. Acesso em: 9 jul. 2025.
LÓPEZ-CASTILLO, L. Margarita et al. Modulation of Aleurone Peroxidases in Kernels of Insect-Resistant Maize (Zea mays L.; Pob84-C3R) After Mechanical and Insect Damage. Frontiers in Plant Science v. 11 , 11 jun. 2020. Disponível em: https://pubmed.ncbi.nlm.nih.gov/32595673/. Acesso em: 9 jul. 2025.
LORENZO, Francesco Di et al. Systemic Agro-Homeopathy: A New Approach to Agriculture. OBM Integrative and Complementary Medicine v. 06, n. 03, p. 1–1 , 11 de maio de 2021. Disponível em: http://www.lidsen.com/journals/icm/icm-06-03-020.
LV, Min et al. Induction of phenylalanine ammonia-lyase (PAL) in insect damaged and neighboring undamaged cotton and maize seedlings. International Journal of Pest Management v. 63, n. 2, p. 166–171 , 3 abr. 2017. Disponível em: https://www.tandfonline.com/doi/abs/10.1080/09670874.2016.1255804. Acesso em: 9 jul. 2025.
MALTA, Marcelo R. et al. Efeito da aplicação de zinco via foliar na síntese de triptofano, aminoácidos e proteínas solúveis em mudas de cafeeiro. Brazilian Journal of Plant Physiology v. 14, n. 1, p. 31–37 , 2002. Disponível em: https://www.scielo.br/j/bjpp/a/f4TSgdw9G4PRSkjBcpZQz6t/. Acesso em: 8 jul. 2025.
MATTOS, Amanda do P. et al. Induction resistance of fig plants to rust by dynamised high dilutions. Biological Agriculture & Horticulture v. 41, n. 1, p. 1–12 , 2 jan. 2025. Disponível em: https://www.tandfonline.com/doi/abs/10.1080/01448765.2024.2406793. Acesso em: 9 jul. 2025.
MÉREY, Georg E. V. et al. Herbivore-induced maize leaf volatiles affect attraction and feeding behavior of Spodoptera littoralis caterpillars. Frontiers in Plant Science v. 4, n. JUN, p. 209 , 28 jun. 2013. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC3695448/. Acesso em: 9 jul. 2025.
MEZZOMO, Priscila et al. Leaf volatile and nonvolatile metabolites show different levels of specificity in response to herbivory. Ecology and Evolution v. 13, n. 5, p. e10123 , 1º mai. 2023. Disponível em: /doi/pdf/10.1002/ece3.10123. Acesso em: 9 jul. 2025.
MIORANZA, Thaísa M. et al. Control of Meloidogyne incognita in tomato plants with highly diluted solutions of Thuya occidentalis and their effects on plant growth and defense metabolism. Semina:Ciencias Agrarias v. 38, n. 4, p. 2187–2200 , 2017.
NAGOSHI, Rod N. et al. Identification and comparison of fall armyworm (Lepidoptera: Noctuidae) host strains in Brazil, Texas, and Florida. Annals of the Entomological Society of America v. 100, n. 3, p. 394–402 , 2007.
OJHA, Megha; NAIDU, Dilip G.T.; BAGCHI, Sumanta. Meta-analysis of induced anti-herbivore defence traits in plants from 647 manipulative experiments with natural and simulated herbivory. Journal of Ecology v. 110, n. 4, p. 799–816 , 1 abr. 2022.
OLIVEIRA, Juliana S. B. et al. Activation of biochemical defense mechanisms in bean plants for homeopathic preparations. African Journal of Agricultural Research v. 9, n. 11, p. 971–981 , 2014.
PANT, Shankar; HUANG, Yinghua. Genome-wide studies of PAL genes in sorghum and their responses to aphid infestation. Scientific Reports v. 12, n. 1, p. 22537 , 1 dez. 2022. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC9800386/. Acesso em: 9 jul. 2025.
PINHEIRO, Luana da S. et al. Características agro econômicas do milho: uma revisão. Natural Resources v. 11, n. 2, p. 13–21 , 12 abr. 2021.
PRIETO MÉNDEZ, J.; et al. Agrohomeopathy: New tool to improve soils, crops and plant protection against various stress conditions. Review. Horticultura Argentina v. 40, n. 101, p. 43–58 , 12 abr. 2021.
RAM, K. V.; RAJ, A. D.; PATEL, K. H. Effect of Nitrogen, Phosphorus and Potassium on Yield, Quality, Nutrient Content and Uptake on Hybrid Maize (Zea mays L.). Agricultural Science Digest v. 43, n. 3, p. 295–300 , 1º jun. 2023.
SAU, Ashok K.; DHILLON, Mukesh K.; TRIVEDI, Neha. Activation of antioxidant defense in maize in response to attack by Sesamia inferens (Walker). Phytoparasitica v. 50, n. 5, p. 1043–1058 , 1 nov. 2022. Disponível em: https://link.springer.com/article/10.1007/s12600-022-00996-2. Acesso em: 9 jul. 2025.
UMESHA, S. Phenylalanine ammonia lyase activity in tomato seedlings and its relationship to bacterial canker disease resistance. Phytoparasitica v. 34, n. 1, p. 68–71 , 2006.
VENDRAMIM, José D.; GUZZO, Élio C.; RIBEIRO, Leandro do P.. Antibiose. In: BALDIN, Edson Luiz Lopes; VENDRAMIM, José Djair; LOURENÇÃO, André Luiz (Orgs.). . Resistência de plantas a insetos: fundamentos e aplicações. Piracicaba, SP: FEALQ, 2019. p. 185–224.
WATERMAN, Jamie M. et al. High-resolution kinetics of herbivore-induced plant volatile transfer reveal clocked response patterns in neighboring plants. eLife v. 12, p. RP89855 , 22 fev. 2024. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC10942584/. Acesso em: 9 jul. 2025.
YADAV, Vivek et al. Phenylpropanoid pathway engineering: An emerging approach towards plant defense .Pathogens. v. 9, n.1, p. 312, 2020.
YAMÉOGO, Innocent S. et al. Level of damage and yield losses associated with the fall armyworm (Spodoptera frugiperda) on maize (Zea mays), millet (Pennisetum glaucum) and sorghum (Sorghum bicolor) on station in Burkina Faso. Crop Protection v. 182, p. 106743 , 1 ago. 2024. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0261219424001716. Acesso em: 8 jul. 2025.
ZAHRA, Noreen et al. Plant photosynthesis under heat stress: Effects and management. Environmental and Experimental Botany v. 206, p. 105178 , 1 fev. 2023. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0098847222004002. Acesso em: 8 jul. 2025.
ZERAIK, Nosode
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Kathleen Tesser Carra, Lucas Airam Ramos Lima, Marieli Nandra Perkuhn, Denise Cargnelutti, Tarita Cira Deboni

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright Notice
The copyright of articles published in this journal remains with the authors, with first publication rights for the journal.
License
When published in this open access journal, licensed through CC BY 4.0, articles are distributed free of charge and can be shared and adapted for any purpose, including commercial. As attribution of use, the license requires that due credit be given, with a link to the license and indication of changes. This does not mean that the licensor endorses the use of the information in the article, or the person who used this information. It also implies the impossibility of applying legal or technological measures that restrict the use of the information by third parties.










