ON THE INCOMMENSURABILITY, THE CONTINUUM AND THE INSEPARABLE LINES IN ARISTOTLE

Authors

DOI:

https://doi.org/10.26512/pl.v1i2.11536

Keywords:

Incommensurability. Continuous. Indivisible linhes. Aristotle.

Abstract

This work aims at to expose the arithmetic proof of incommensurability between the values to the legs and hypotenuse of a right triangle and the resulting impact of knowledge of irrational numbers among the Greeks. Then, we show the implications of these innovations to the analysis Aristotle’s Physics concerning the possibility of infinite divisibility of matter and the existence of linear continuous physical quantities. Thirdly, we use the rare Aristotelian treatise On the Indivisible Lines to complement this denial of the existence of discrete indivisible atomic entities.

Downloads

Download data is not yet available.

Author Biography

  • Luiz Henrique de Lacerda Abrahão, Universidade Federal de Minas Gerais
    Doutorando em Filosofia pela Universidade Federal de Minas Gerais-UFMG.

References

ANNAS, Julia. Aristotle, Number and Time. In: The Philosophical Quarterly, Vol. 25, No. 99 (Apr.), 1975, pp. 97-113.

ARISTÓTELES. Física. Tradução e notas de Ute Schmidt Osnanczik. México: Universidad Nacional Autonoma del México, 2001.

________. Metafísica. Tradução de Vizenzo Cocco. São Paulo: Abril Cultural, 1984.

BERTI, Enrico. As Razões de Aristóteles. São Paulo: Edições Loyola, 2002.

BORNHEIM, Gerd. Os Filósofos Pré-socráticos. São Paulo: Editora CULTRIX, 1998.

BOSTOCK, David. Space, Time, Matter, and Form: Essays on Aristotle’s Physics. Oxford: Oxford University Press, 2006.

CHANTRAINE, PIERRE. Dictionnaire Étymologique de la Langue Grecque: Histoire des Mots. Paris: Éditons Klincksieck, 1968.

DEHN, Max. Mathematics, 600 B.C-400 B.C. In: The American Mathematical Monthly, Vol. 50, N. 6 (Jun.-Jul), 1945, pp. 357-360.

FEYERABEND, Paul. Alguns Comentários à Teoria da Matemática e do Contínuo de Aristóteles, In: Adeus à Razão. Lisboa: Edições 70, 1991, pp. 259-288.

GANDZ, Solomon. On the Origin of the Term “Root”. In: The American Mathematical Monthly, Vol. 33, N. 5 (May), 1926, pp. 261-265.

KNNOR, Wilbur. “Rational Diameters” and the Discovery of Incommensurability. In: The American Mathematical Monthly, Vol. 105, N. 5 (May), 1998, pp. 421-429.

LEAR, Jonathan. Aristotle’s Philosophy of Mathematics. In: The Philosophical Review, Vol. 91, No. 2 (Apr.), 1982, pp. 161-192.

PETERS, Francis. Termos Filosóficos Gregos: Um Léxico Histórico. Lisboa: Fundação Calouste Gulbenkian, 1996.

Published

2013-03-15

Issue

Section

Artigos

How to Cite

ON THE INCOMMENSURABILITY, THE CONTINUUM AND THE INSEPARABLE LINES IN ARISTOTLE. (2013). PÓLEMOS – Revista De Estudantes De Filosofia Da Universidade De Brasília, 1(2), 169-180. https://doi.org/10.26512/pl.v1i2.11536