CASSINI-HUYGENS: The Space Probe That Changed Saturn’s and Its Icy Moons Titan and Enceladus Comprehension

Authors

  • Fernando Henrique Martins Instituto de Ciência Tecnologia e Inovação ICTI, Universidade Federal da Bahia, UFBA, 42809-000, Camaçari, Brasil
  • José Leonardo Ferreira Universidade de Brasília

Keywords:

Cassini-Huygens Spacecraft. Saturn. Titan. Enceladus.

Abstract

This year, the Cassini-Huygens mission completes five years since its demise when it was purposely launched to crash into the thick atmosphere of our great “Lord of the Rings”. For almost twenty years, this mission has obtained surprising results on the complex Saturn system, revealing mysteries and obscured phenomena due to the enormous distance that separates this planet from Earth. In this context, the main achievements of the Cassini mission sent to investigate Saturn, its rings and moons will be presented, emphasizing the results obtained on the moons Titan and Enceladus from an extensive literature review. The equipment and experiments that traveled aboard the Cassini spacecraft and the European probe Huygens collected data and revealed jet streams in Saturn’s atmosphere, long storms that sweep the planet from east to west, and aurora borealis phenomena occurring on its upper atmosphere. In addition, the mission contributed to a better understanding of the interactions that exist between Saturn, its rings and its moons. Finally, the Cassini spacecraft revealed that the icy moon Enceladus presents geological activity such as cryovolcanism and Titan has lakes, rivers and oceans of hydrocarbons that undergo transformations similar to those that water undergoes here on Earth.

References

ACHILLEOS, N., et al. (2008). Large-Scale Dynamics of Saturn’s Magnetopause: Observations by Cassini, Journal of Geophysical Research 113, A11209.

AGUIAR, A. C. B., et al. (2010). A laboratory model of Saturn’s North Polar Hexagon, Icarus, 206: 755-763.

BAINES, K. H., et al. (2009a). Saturn’s north polar cyclone and hexagon at depth revealed by Cassini/VIMS. Planet. Space Sci., in press.

BAINES, K. H., et al. (2009b). The deep clouds of Saturn: Morphology, spatial distribution, and dynamical implications as revealed by Cassini/VIMS. Icarus.

BROWN, D., e Agle D. C. (2009). Salt Finding from NASA’s Cassini Hints at Ocean within Saturn Moon, NASA news.

BROWN, R. H., et al. (2004). The Cassini Visual and Infrared Mapping Spectrometer (VIMS) Investigation. In C. T. Russel. The Cassini-Huygens Mission: Orbiter Remote Sensing Investigations, Springer.

CARROL, B. W., e Ostlie D. A. (2017). An Introduction to Modern Astrophysics, Cambridge University Press.

COLWELL, J. E., et al. (2009). The Structure of Saturn’s Rings. In M. K. Dougherty, L. W. Esposito, S. M. Krimigis, eds. Saturn from Cassini-Huygens, Springer.

COUSTENIS, A., et al. (2009). Earth-Based Perspective and Pre-Cassini–Huygens Knowledge of Titan. In: Titan from Cassini Huygens, Springer.

DEL GENIO, A. D., et al. (2009). Saturn Atmospheric Structure and Dynamics. In M. K. Dougherty, L. W. Esposito, S. M. Krimigis, eds. Saturn from Cassini-Huygens, Springer.

DESCH, M. D. (1982). Evidence for Solar Wind Control of Saturn Radio Emission, J. Geo. Res. 87, 4549–4554.

DOUGHERTY, M. K., et al. (2002). The Cassini Magnetic Field Investigation. In C. T. Russel. The Cassini-Huygens Mission: Orbiter In-Situ Investigations, Springer.

DOUGHERTY, M. K., Seidelmann B. J., e Spencer J. R. (2018). Enceladus as an Active World: History and Discovery. In P. M. Schenk et al., eds. Enceladus and the Icy Moons of Saturn. (pp. 3-16). Univ. of Arizona, Tucson.

DYUDINA, U.A., et al. (2007). Lightning storms on Saturn observed by Cassini ISS and RPWS during 2004–2006. Icarus 190, 545–555.

ELACHI, C., et al. (1999). Radar: The Cassini Titan Radar Mapper. In C. T. Russel. The Cassini-Huygens Mission: Orbiter Remote Sensing Investigations, Springer.

ESPOSITO, L. W., et al. (2000). The Cassini Ultraviolet Imaging Spectrograph Investigation. In C. T. Russel. The Cassini-Huygens Mission: Orbiter Remote Sensing Investigations, Springer.

ESPOSITO, L. W., et al. (2004). The Cassini Ultraviolet Imaging Spectrograph Investigation. Space Sci. Rev. 115, 299–361.

FARRELL, W. (2008). Enceladus is Supplying Ice to Saturn’s A-Ring, Universe Today.

FLASAR, F. M., et al. (2004). Exploring the Saturn System in the Thermal Infrared: The Composite Infrared Spectrometer. In C. T. Russel. The Cassini-Huygens Mission: Orbiter Remote Sensing Investigations, Springer.

FLETCHER, L. N., et al. (2008). Temperature and composition of Saturn’s polar hot spots and hexagon. Science 319, 79–81.

GURNETT, D. A. et al. (2004). The Cassini Radio and Plasma Wave Science Investigation. Space Sci. Rev. 114, 395–463.

GURNETT, D. A. (2005). Radio and Plasma Wave Observations at Saturn from Cassini’s Approach and First Orbit, Science 307, 1255–1259.

HAMILTON, D. P. (2006). The collisional cascade model for Saturn’s ring spokes. Bull. Am. Astron. Soc. 38, 578.

HANSEN, C. J., et al. (2006). Enceladus’ water vapor plume. Science, 311, 1423-1425.

HARTLE, R. E. (1985). Interaction of Titan’s Atmosphere with Saturn’s Magnetosphere, Advances in Space Research, 5, 321–332.

HEMINGWAY, D., et al. (2018). The Interior of Enceladus. In P. M. Schenk et al., eds. Enceladus and the Icy Moons of Saturn. (pp. 129-162). Univ. of Arizona, Tucson.

HORÁNYI, M. et al. (2009). Diffuse Rings. In M. K. Dougherty, L. W. Esposito, S. M. Krimigis, eds. Saturn from Cassini-Huygens. Springer.

HUBBARD, W. B., et al. (2009). The Interior of Saturn. In M. K. Dougherty, L. W. Esposito, S. M. Krimigis, eds. Saturn from Cassini-Huygens. Springer.

HULTQVIST, B. (2007). The Aurora. In: Y. Kamide/A. Chian, Handbook of the Solar-Terrestrial Investigations of Jupiter and Saturn Environment. J. Astron. 67 (587) 333-354.

JAUMANN, R., et al. (2009.) Geology and Surface Processes on Titan. In: Titan from Cassini Huygens, Springer.

JOHNSON, T. V. e Estrada P. R. (2009). Origin of the Saturn System. In M. K. Dougherty, L. W. Esposito, S. M. Krimigis, eds. Saturn from Cassini-Huygens. Springer.

KAISER, M. L., et al. (1980). Voyager Detection of Nonthermal Radio Emission from Saturn, Science 209, 1238.

KEPLER, S. O., e SARAIVA M. F. O. (2017). Astronomia e Astrofísica, 4ªed., São Paulo: Editora Livraria da Física.

KIVELSON, M. G. et al. (2006). Does Enceladus Govern Magnetospheric Dynamics at Saturn? Science 311, 1391–1392.

LEDVINA, S. A. (2004). Titan’s Induced Magnetosphere, Advances in Space Research 33, 2092–2102.

LI, C. e INGERSOLL, A. P. (2015), Moist convection in hydrogen atmospheres and the frequency of Saturn’s giant storms, Nature Geoscience, 8: 398-403.

LOPES, R. M. C., et al. (2020). A Global Geomorphologic Map of Saturn’s Moon Titan, Nat. Astron., 4: 228–233.

LORENZ, R., e Mitton, J. (2008). Titan Unveiled: Saturn’s Mysterious Moon Explored. Princeton University Press.

MELTZER, M. (2015). The Cassini-Huygens Visit to Saturn: An Historic Mission to the Ringed Planet, Springer.

PORCO, C. C., et al. (2004). Cassini Imaging Science: Instrument Characteristics and Anticipated Scientific Investigations at Saturn. In C. T. Russel. The Cassini-Huygens Mission: Orbiter Remote Sensing Investigations. Springer.

PORCO, C., et al. (2014). How the Geysers, Tidal Stresses, and Thermal Emission Across the South Polar Terrain of Enceladus are Related, The Astronomical Journal, 148, 45.

POSTBERG, F., et al. (2018). Plume and Surface Composition of Enceladus. In P. M. Schenk et al., eds. Enceladus and the Icy Moons of Saturn. (pp. 129-162). Univ. of Arizona, Tucson.

SCHENK, P. M., et al. (2018). Enceladus and the Icy Moons of Saturn, Arizona LPI.

SPAHN, F., et al. (2006). Cassini Dust Measurements at Enceladus and Implications for the Origin of the E Ring, Science 311, 1416 – 1418.

SPENCER, J. R., et al. (2006). Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot, Science 311, 1401 – 1405.

SPILKER, L. J. (1997). Passage to a Ringed World, NASA SP-533, Washington D.C.: NASA.

SRAMA, R., et al. (2002). The Cassini Cosmic Dust Analyzer. In C. T. Russel. The Cassini-Huygens Mission: Orbiter In-Situ Investigations. Springer.

STALLARD, T., Lystrup, M., Miller, S. (2008). Emission-line imaging of Saturn’s H3+ aurora. Astrophys. J. 675, L117.

STONE, E. C., et al. (1981). Voyager 1 Encounter with the Saturnian System, Science 212, 159–163.

TAGGER, M., Henricksen, R. N., Pellat, R. (1991). On the nature of the spokes in Saturn’s rings. Icarus 91, 297–314.

TOMASKO, M. G., et al. (1999). The Descent Imager/Spectral Radiometer (DISR) Experiment on the Huygens Entry Probe of Titan. In C. T. Russel. The Cassini-Huygens Mission: Overview, Objectives and Huygens Instrumentarium. Springer.

VAN ALLEN, J. A., et al. (1980). The Energetic Charged Particle Absorption Signature of Mimas, J. Geophys. Res. 85(A11), 5709–5718.

VERBISCER, A. J., et al. (2007). Enceladus: Cosmic Ion and Neutral Mass Spectrometer: Enceladus: Cosmic graffiti artistic caught in the act. Science, 315, 815-817.

VERBISCER A. J., et al. (2009). Saturn’s Largest Ring, Nature 461, 1098–1100.

WAITE, J. H., et al. (2004). The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation. In C. T. Russel. The Cassini-Huygens Mission: Orbiter In-Situ Investigations. Springer.

YAROSHENKO, V., Horányi, M., Morfill, G. (2008). The wave mechanism of spoke formation in Saturn’s rings. In: Multifacets of Dusty Plasmas, Fifth Int’l. Conf. Physics of Dusty Plasmas. AIP Conf. Proc. 1041, 215–216.

Published

2023-01-09

How to Cite

CASSINI-HUYGENS: The Space Probe That Changed Saturn’s and Its Icy Moons Titan and Enceladus Comprehension. (2023). Physicae Organum, 8(2), 1-24. https://periodicostestes.bce.unb.br/index.php/physicae/article/view/45718