MISTURA ESPECTRAL: (I) DETECÇÃO DOS MEMBROS FINAIS UTILIZANDO A GEOMETRIA DO SIMPLEX
DOI:
https://doi.org/10.26512/2236-56562003e39718Palabras clave:
mistura espectral, simplex, membros finaisResumen
O conceito de mistura espectral permitiu uma nova abordagem nos procedimentos de classificação de imagens. Esse procedimento busca identificar e quantificar os constituintes que compõem os pixels. Para tanto é necessário estabelecer três etapas de processamento: (a) detecção dos membros finais, (b) localização dos elementos e (c) quantificação. O presente trabalho possui como objetivo discutir e sintetizar as principais abordagens para a detecção dos membros finais utilizando a geometria do simplex. Para tanto são definidos três tipos de simplex: (a) mínimo volume, (b) máximo volume e (c) volume intermediário. Cada modelo é discutido enfocando-se sua importância para o estabelecimento dos membros finais.
Referencias
BATESON, C. A. & CURTISS, B. (1993). A tool for manual endmember selection and spectral unmixing. In: Annual JPL Airborne Geosciences Workshop, 4, Pasadena, CA. Summaries. JPL Publ. 93-26, p. 3-6.
BATESON, C. A. & CURTISS, B. (1996). A method for manual endmember selection and spectral unmixing. Remote Sens. Environ. 55:229-243.
BOARDMAN, J. W. & KRUSE, F. A. (1994). Automated spectral analysis: A geologic example using AVIRIS data, north Grapevine Mountains, Nevada: In, ERIM Tenth Thematic Conference on Geologic Remote Sensing, 10, Environmental Research Institute of Michigan, Ann Arbor, MI. Proceedings. v. 1, p. 407-418.
BOARDMAN, J. W. (1993). Automated spectral unmixing of AVIRIS data using convex geometry concepts: In: Annual JPL Airborne Geosciences Workshop, 4, Pasadena, CA. Summaries. JPL Publ. 93-26, p. 11-14.
BOARDMAN, J. W.; KRUSE, F. A. & GREEN, R. O. (1995). Mapping target signatures via partial unmixing of AVIRIS data: In: Annual JPL Airborne Geosciences Workshop, 5, Pasadena, CA, Summaries. JPL Publ. 95-1. v. 1. p. 23-26.
CARVALHO JÚNIOR, O. A.; CARVALHO, A. P. F.; GUIMARÃES, R. F., MENESES, P. R. (2003a) Mistura espectral: (II) classificadores espectrais para identificação. Espaço & Geografia, v. 6. no. 1. 175-197.
CARVALHO JÚNIOR, O. A.; CARVALHO, A. P. F.; GUIMARÃES, R. F., MENESES, P. R. (2003b) Mistura espectral: (III) quantificação espectral. Espaço & Geografia, v. 6. no. 1. 197-223.
CARVALHO JÚNIOR., O. A.; MARTINS, É. S.; BAPTISTA, G. M. M.; CARVALHO, A. P. F.; MADEIRA NETTO, J. S.; MENESES, P. R. (1999). Mineralogical differentiation in weathering profiles of lateritic Ni using AVIRIS data, in Niquelandia - GO, Brazil. In: JPL Airborne Earth Science Workshop, 8, Pasadena, CA. Summaries, JPL Publ. 99- 17. v. 1, p. 3-11.
CRAIG, D. M. (1994). Minimum volume transform for remotely sensed data, IEEE Transact. Geosci. Remote Sens. v. 32. no. 3, p. 542-552
ENVI® (1997). Tutorials better solutions Consulting Limited Liability Company Lafayette, Colorado, USA, 370p.
GREEN, A. A.; BERMAN, M.; SWITZER, P., CRAIG, M. D. (1988). A transformation for ordering multispectral data in terms of images quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens., v. 26, no. 1, p. 65-74.
KRUSE, F. A. & BOARDMAN, J. W. (1999). Fifteen years of hyperspectral data: Northern Grapevine Mountains, Nevada. In: JPL Airborne Earth Science Workshop, 8, Pasadena, CA. Summaries. JPL Publ. 99-17. v.1, p. 247-258.
KRUSE, F. A. (1996). Geologic mapping using combined optical remote sensing and SIR-C/X-SAR data. In: Thematic Conference and Workshops on Applied Geologic Remote Sensing, 11, Las Vegas, Nevada. v. 2, p. 142-150.
KRUSE, F. A. (1999). Mapping hot spring deposits with AVIRIS at Steamboat Springs, Nevada. In: JPL Airborne Earth Science Workshop, 8, Pasadena, CA. Summaries, JPL Publ. 99-17. v.1, p. 239-245.
KRUSE, F. A.; HUNTINGTON, J. H. & GREEN, R. O. (1996). Results from the 1995 AVIRIS Geology Group Shoot. International Airborne Remote Sensing Conference and Exhibition, 2, Proceedings, p. 211-220.
MUSTARD, J. F. (1993). Relationships of soil, grass, and bedrock over the Kaweah Serpentinite Melange through spectral mixture analysis of AVIRIS data. Remote Sens. Environ. 44:293-308.
RICHARDSON, L. L. (1996). Remote sensing of algal bloom dynamics: Bio Science, v. 46, no. 7, p. 492-501.
RICHARDSON, L. L.; BUISON, D.; LUI, C. J. & AMBROSIA, V. (1994). The detection of algal photosynthetic accessory pigments using Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) spectral data. Marine Technology Society Journal, 28:10-21.
SABOL D. E. JR., ADAMS J. B. & SMITH M. O. (1992). Quantitative subpixel spectral of targets in multiespectral images, J. Geophys. Res., 97, 2.659-2.672.
SMITH, M. O., USTIN, S. L., ADAMS, J. B., AND GILLESPIE, A. R. (1990), Vegetation in deserts. I. A regional measure of abundance from multispectral images. Remote Sens. Environ., 31:1-26.
SMITH, M. O.; JOHNSON, P. E. & ADAMS, J. B. (1985). Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis. Proc. 15th Lunar Planet. Sci. Conf. Part2. J Geophys. Res., 90, Suppl., p. C797-C804.
TOMPKINS, S.; MUSTARD, J. F.; PIETERS, C. M. & FORSYTH, D. W. (1997). Optimization of endmembers for spectral mixture analysis. Remote Sens. Environ. 59:472-489.
Descargas
Publicado
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.