SPECTRICAL MIXTURE: (I) MEMBERS DETECTION FINALS USING SIMPLEX GEOMETRY

Authors

  • Osmar Abílio de Carvalho Júnior INPE - Instituto Nacional de Pesquisas Espaciais 12201-970 - São José dos Campos - SP, Brasil.
  • Ana Paula Ferreira de Carvalho UnB - Universidade de Brasília - Departamento de Ecologia Campus Universitário Darcy Ribeiro, Asa Norte - 70910-900, Brasília, DF, Brasil
  • Renato Fontes Guimarães UnB - Universidade de Brasília - Departamento de Geografia Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brasil.
  • Paulo Roberto Meneses UnB - Universidade de Brasília - Departamento de Geologia Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brasil
  • Yosio Edemir Shimabukuro 1 INPE - Instituto Nacional de Pesquisas Espaciais 12201-970 - São José dos Campos - SP, Brasil.

DOI:

https://doi.org/10.26512/2236-56562003e39718

Keywords:

spectral mixture, simplex, endmembers

Abstract

The spectral mixture concepts allowed a new approach in the image classification procedures. This procedure searches to identify and to quantify the constituents that compose the pixels. Thus it is necessary to establish three processing stages: (a) endmembers detection, (b) elements location and (c) quantification. The present work has as objective to discuss and to synthesize the main approaches to endmembers detection using simplex geometry. For this, it was defined three simplex types: (a) simplex of minimum volume (b) maximum volume and (c) intermediate volume. Each model is discussed focusing on its importance to the establishment of the endmembers.

References

BATESON, C. A. & CURTISS, B. (1993). A tool for manual endmember selection and spectral unmixing. In: Annual JPL Airborne Geosciences Workshop, 4, Pasadena, CA. Summaries. JPL Publ. 93-26, p. 3-6.

BATESON, C. A. & CURTISS, B. (1996). A method for manual endmember selection and spectral unmixing. Remote Sens. Environ. 55:229-243.

BOARDMAN, J. W. & KRUSE, F. A. (1994). Automated spectral analysis: A geologic example using AVIRIS data, north Grapevine Mountains, Nevada: In, ERIM Tenth Thematic Conference on Geologic Remote Sensing, 10, Environmental Research Institute of Michigan, Ann Arbor, MI. Proceedings. v. 1, p. 407-418.

BOARDMAN, J. W. (1993). Automated spectral unmixing of AVIRIS data using convex geometry concepts: In: Annual JPL Airborne Geosciences Workshop, 4, Pasadena, CA. Summaries. JPL Publ. 93-26, p. 11-14.

BOARDMAN, J. W.; KRUSE, F. A. & GREEN, R. O. (1995). Mapping target signatures via partial unmixing of AVIRIS data: In: Annual JPL Airborne Geosciences Workshop, 5, Pasadena, CA, Summaries. JPL Publ. 95-1. v. 1. p. 23-26.

CARVALHO JÚNIOR, O. A.; CARVALHO, A. P. F.; GUIMARÃES, R. F., MENESES, P. R. (2003a) Mistura espectral: (II) classificadores espectrais para identificação. Espaço & Geografia, v. 6. no. 1. 175-197.

CARVALHO JÚNIOR, O. A.; CARVALHO, A. P. F.; GUIMARÃES, R. F., MENESES, P. R. (2003b) Mistura espectral: (III) quantificação espectral. Espaço & Geografia, v. 6. no. 1. 197-223.

CARVALHO JÚNIOR., O. A.; MARTINS, É. S.; BAPTISTA, G. M. M.; CARVALHO, A. P. F.; MADEIRA NETTO, J. S.; MENESES, P. R. (1999). Mineralogical differentiation in weathering profiles of lateritic Ni using AVIRIS data, in Niquelandia - GO, Brazil. In: JPL Airborne Earth Science Workshop, 8, Pasadena, CA. Summaries, JPL Publ. 99- 17. v. 1, p. 3-11.

CRAIG, D. M. (1994). Minimum volume transform for remotely sensed data, IEEE Transact. Geosci. Remote Sens. v. 32. no. 3, p. 542-552

ENVI® (1997). Tutorials better solutions Consulting Limited Liability Company Lafayette, Colorado, USA, 370p.

GREEN, A. A.; BERMAN, M.; SWITZER, P., CRAIG, M. D. (1988). A transformation for ordering multispectral data in terms of images quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens., v. 26, no. 1, p. 65-74.

KRUSE, F. A. & BOARDMAN, J. W. (1999). Fifteen years of hyperspectral data: Northern Grapevine Mountains, Nevada. In: JPL Airborne Earth Science Workshop, 8, Pasadena, CA. Summaries. JPL Publ. 99-17. v.1, p. 247-258.

KRUSE, F. A. (1996). Geologic mapping using combined optical remote sensing and SIR-C/X-SAR data. In: Thematic Conference and Workshops on Applied Geologic Remote Sensing, 11, Las Vegas, Nevada. v. 2, p. 142-150.

KRUSE, F. A. (1999). Mapping hot spring deposits with AVIRIS at Steamboat Springs, Nevada. In: JPL Airborne Earth Science Workshop, 8, Pasadena, CA. Summaries, JPL Publ. 99-17. v.1, p. 239-245.

KRUSE, F. A.; HUNTINGTON, J. H. & GREEN, R. O. (1996). Results from the 1995 AVIRIS Geology Group Shoot. International Airborne Remote Sensing Conference and Exhibition, 2, Proceedings, p. 211-220.

MUSTARD, J. F. (1993). Relationships of soil, grass, and bedrock over the Kaweah Serpentinite Melange through spectral mixture analysis of AVIRIS data. Remote Sens. Environ. 44:293-308.

RICHARDSON, L. L. (1996). Remote sensing of algal bloom dynamics: Bio Science, v. 46, no. 7, p. 492-501.

RICHARDSON, L. L.; BUISON, D.; LUI, C. J. & AMBROSIA, V. (1994). The detection of algal photosynthetic accessory pigments using Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) spectral data. Marine Technology Society Journal, 28:10-21.

SABOL D. E. JR., ADAMS J. B. & SMITH M. O. (1992). Quantitative subpixel spectral of targets in multiespectral images, J. Geophys. Res., 97, 2.659-2.672.

SMITH, M. O., USTIN, S. L., ADAMS, J. B., AND GILLESPIE, A. R. (1990), Vegetation in deserts. I. A regional measure of abundance from multispectral images. Remote Sens. Environ., 31:1-26.

SMITH, M. O.; JOHNSON, P. E. & ADAMS, J. B. (1985). Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis. Proc. 15th Lunar Planet. Sci. Conf. Part2. J Geophys. Res., 90, Suppl., p. C797-C804.

TOMPKINS, S.; MUSTARD, J. F.; PIETERS, C. M. & FORSYTH, D. W. (1997). Optimization of endmembers for spectral mixture analysis. Remote Sens. Environ. 59:472-489.

Published

2022-01-21

How to Cite

SPECTRICAL MIXTURE: (I) MEMBERS DETECTION FINALS USING SIMPLEX GEOMETRY. (2022). Space and Geography Journal, 6(1), 151-176. https://doi.org/10.26512/2236-56562003e39718