Resolução Numérica da Equação de Schrödinger usando o Método da Colocação Ortogonal

Authors

  • Fran Sérgio Lobato Universidade Federal de Uberlândia
  • William Júnio Lima
  • Gustavo Barbosa Libotte

Keywords:

Equação de Schrödinger, Colocação Ortogonal, Potencial de Pöschi-Teller, Método Numérico

Abstract

The study of Schrödinger equation configures a field of great interest in science due to numerous applications that can be developed, among then we can cite case studies in solid and molecular physics, nuclear, particle and structures. In this context, the present work aims to propose a methodology for numerically solving the Schrödinger equation using the Orthogonal Collocation Method. This approach consists of rewriting the original partial differential model into an equivalent model constituted by an ordinary differential system. To validate the proposed methodology, two mathematical case studies and one physical considering the Pöschi-Teller potential, are solved. The results obtained demonstrate that the proposed approach is a good alternative for solving this class of problems.

References

FOCK, V. Fundamentals of Quantum Mechanics, Mir Publishers, Moscow, 1978.

GREINER, W. Relativistic Quantum Mechanics, Berlin: Springer, 1990.

GRIFFITHS, D. J.; SCHROETER, D. F. Introduction to Quantum Mechanics. Cambridge University Press. Third Edition, 508 pages, 2018.

MAKOWSKI, A. J.; DEMBINSKI, S. T. Exactly Solvable Models with Time Dependent Boundary Conditions, Physics Letters A, 154(5-6), 217-220, 1991.

ORSZAG, S. Comparison of Pseudospectral and Spectral Approximation, Studies in Applied Mathematics, 51(3), 253-259, 1972.

MARSTON, C.; BALINT-KURTI, G. The Fourier Grid Hamiltonian Method for Bound State Eigenvalues and Eigenfunctions, The Journal of Chemical Physics, 91(6), 3571-3576, 1989.

ROBINSON, M.; FAIRWEATHER, G. Orthogonal Spline Collocation Methods for Schrodinger Type Equation in One Space Variable, Numerisch Mathematik, 68(3), 355-376, 1994.

ARONSTEIN, D.; STROUD, C.. General Series Solution for Finite Square-Well Energy Levels for use in Wave-Packet Studies, American Journal of Physics, 68(10), 943-949, 2000.

MONOVASILIS, T.; KALOGIRATOU, Z. Exponential-Fitting Symplectic Methods for the Numerical Integration of the Schrödinger Equation. Computational Methods In Sciences And Engineering, 37(3), 446-450, 2003.

STRIKWERDA, J. Finite Difference Schemes and Partial Differential Equations, Second Edition, Philadelphia, SIAM, 2004.

PEREIRA, L. C.; FERREIRA, J. V. B.; NASCIMENTO, V. A. Soluções Variacionais e Numéricas da Equação de Schrödinger 1D Submetida ao Potencial de Pöschl-Teller. Revista Principia, 48, 156-168, 2004.

JACKIEWICZ, Z.; ZUBIK-KOWAL, B. Spectral Collocation and Waveform Relaxation Methods for Nonlinear Delay Partial Differential Equation, Applied Numerical Mathematics, 56(3-4), 433-443, 2006.

SANDVIK, A. Numerical Solutions of the Schrödinger Equation, Department of Physics, Boston University, 2013.

ENGLAND, R.; SAVARI, M. On the Pseudo-Spectral Method of Solving Linear Ordinary Differential Equations, Journal of Mathematics and Statistics, 5(2), 136-140, 2009.

KHAN, A.; AHSAN, M.; BONYAH, E.; JAN, R.; NISAR, M.; ABDEL-ATY, A.-H.; YAHIA, I. S. Numerical Solution of Schrödinger Equation by Crank–Nicolson Method, Mathematical Problems in Engineering, 11 pages, 2022.

MODANLI, M.; BAJJAH, B.; KUSULAY, S. Two Numerical Methods for Solving the Schrödinger Parabolic and Pseudoparabolic Partial Differential Equations, Advances in Mathematical Physics, 2022, 10 pages, 2022.

VILLADSEN, J.; MICHELSEN, M. L. Solution of Differential Equation Models by Polynomial Approximation, 1978.

LARANJEIRA, P.; PINTO, J.C. Metodos Numéricos em Problemas de Engenharia Química, Editora EPapers, 316, ISBN 85-87922-11-4, 1a ed, 2001.

Published

2023-01-31

How to Cite

Resolução Numérica da Equação de Schrödinger usando o Método da Colocação Ortogonal. (2023). Revista Interdisciplinar De Pesquisa Em Engenharia, 8(2), 62-70. https://periodicostestes.bce.unb.br/index.php/ripe/article/view/46839