Noise control in plumbing systems

literature review

Authors

DOI:

https://doi.org/10.18830/1679-09442025v18e54350

Keywords:

Acoustic, Plumbing systems, Buildings, Systematic review

Abstract

This systematic literature review explores the state of the art and identifies gaps in the scientific literature regarding noise generated by hydro-sanitary systems in residential buildings. Both quantitative and qualitative results are presented, along with a framework connecting the current state of research to the needs and opportunities in this field. Although relatively few publications on this subject are found in journals indexed in major research databases, studies addressing the annoyance caused by this type of noise and methods to control it are common. The findings aim to: (a) map the key scientific and technical references available in the literature; (b) with the state of the art of research and discussions relevant to noise control in plumbing systems; and (c) identify the primary research gaps. These results provide a deeper understanding of the acoustic performance of hydro-sanitary systems, supporting efforts to enhance comfort and well-being for users of residential buildings.

Author Biographies

  • Dariane Gomes Rocha, Universidade Federal de Goiás; Escola de Engenharia Civil e Ambiental; Programa de Pós-Graduação em Geotecnia, Estruturas e Construção Civil.

    Civil Engineer, currently pursuing a master's degree in Geotechnics, Structures, and Civil Construction at the Federal University of Goiás (GECON/UFG). Her work focuses on building performance, particularly thermal performance (modeling and calculation of thermal comfort); acoustic performance (design and laboratory acoustic measurements); and fire prevention and control (design and inspections). She is currently a member of the technical staff of the Acoustic Synthesis Laboratory, primarily involved in building acoustic testing and assisting in the maintenance and continuous improvement of the Quality Management System.

  • Lais Aparecida Ywashima, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo; Campus São Paulo; Departamento de Construção Civil

    Civil Engineer with a Master's degree in Civil Engineering from the University of Campinas (UNICAMP). She has been a professor at the Federal Institute of Education, Science, and Technology of São Paulo (IFSP) since 2008, teaching primarily in courses related to residential plumbing and electrical systems. She currently coordinates the Technical Course in Buildings, which is a concurrent/subsequent program after high school, at IFSP. She has experience in Civil Engineering, focusing primarily on topics related to plumbing and sanitation systems and water conservation in buildings.

  • Cibele de Moura Guimarães, Universidade Federal de Goiás; Escola de Engenharia Civil e Ambiental; Programa de Pós-Graduação em Geotecnia, Estruturas e Construção Civil.

    Currently (2024), a scholarship holder of the Coordination for the Improvement of Higher Education Personnel (CAPES). She was a Substitute Professor at the Instituto Federal Goiano - Campus Trindade (2019, 2022 - 2023), teaching subjects such as Hydrosanitary Installations 1, Hydrology, Sanitation, Construction Materials 1, Construction Materials 2, Occupational Safety in Civil Construction, among others. She was also a professor at CEGESP, teaching Fluid Mechanics and Hydraulics 1.

  • Ricardo Prado Abreu Reis, Universidade Federal de Goiás; Escola de Engenharia Civil e Ambiental; Departamento de Construção Civil

    Holds a PhD in Civil Engineering in the sub-area of Architecture and Construction through the Postgraduate course in Civil Engineering at the Faculty of Civil Engineering, Architecture and Urbanism of the State University of Campinas (FEC-UNICAMP) in 2018, Master in Civil Engineering from the Master's Course in Civil Engineering at the Federal University of Goiás (CMEC-UFG) in 2005 and Bachelor in Civil Engineering from the Federal University of Goiás in 1999. He is currently Adjunct Professor 2 of the undergraduate programs in civil engineering, environmental and sanitary engineering, and architecture and urbanism at the Federal University of Goiás. Associate Coordinator of the Building Systems Working Group (ANTAC). He has experience in Sanitary Hydraulic Building Systems, Conservation and Rational Use of Water, Source Drainage Systems, LID (Low Impact Development) Practices, Civil Construction, as well as Hydraulics and Sanitation.

References

ABNT, Associação Brasileira de Normas Técnicas. NBR 10844: Instalações prediais de águas pluviais. Rio de Janeiro, 1989.

ABNT, Associação Brasileira de Normas Técnicas. NBR 8160: Sistemas prediais de esgoto sanitário - Projeto e Execução. Rio de Janeiro, 1999.

ABNT, Associação Brasileira de Normas Técnicas. NBR 15575-6: Edificações habitacionais – Desempenho – Parte 6: Sistemas Hidrossanitários. Rio de Janeiro, 2021.

ABNT, Associação Brasileira de Normas Técnicas. NBR 5626: Sistemas prediais de água fria e água quente – Projeto, execução, operação e manutenção. Rio de Janeiro, 2020a.

ABNT, Associação Brasileira de Normas Técnicas. NBR ISO 16032: Acústica - medição de nível de pressão sonora de equipamentos prediais de edificações - Método de Engenharia. Rio de Janeiro, 2024.

ABNT, Associação Brasileira de Normas Técnicas. NBR 10052: Acústica — Medições em campo de isolamento a ruído aéreo e de impacto e de sons de equipamentos prediais — Método simplificado. Rio de Janeiro, 2022a.

ABNT, Associação Brasileira de Normas Técnicas. NBR 10152: Acústica — Níveis de pressão sonora em ambientes internos à edificações. Rio de Janeiro, 2022b.

ABNT, Associação Brasileira de Normas Técnicas. NBR ISO 12354-1: Acústica de edificações — Estimativa do desempenho acústico nas edificações por meio do desempenho de elementos – Parte 1: Isolamento a ruído aéreo entre ambientes. Rio de Janeiro, 2023.

AMANCO-WAVIN. Ficha Técnica Esgoto Silentium, 2024. Disponível em: https://mediahub.wavin.com/m/36bfd4f2b82d83de/original/FT-Esgoto-Silentium.pdf?_gl=1*1dp3kiy*_ga*OTI4MjU1NzA4LjE3MzM0MTkwMTU.*_ga_K6JQ2GQFCT*MTczMzQxOTAxNS4xLjEuMTczMzQyMDk2NS4wLjAuMA. Acesso em: 03 dez. 2024.

ANDARGIE, M. S.; TOUCHIE, M.; O´BRIEN, W. A survey of factors that impact noise exposure and acoustics comfort in multi-unit residential buildings. Canadian Acoustics, v. 48, n. 3, p. 25-42, 2020. Disponível em: https://jcaa.caa-aca.ca/index.php/jcaa/article/view/3389. Acesso em: 20 out. 2024.

ASFAMAS, Associação Brasileira dos Fabricantes de Materiais para Saneamento; TESIS, Tecnologia e Qualidade de Sistemas em Engenharia. Estudo que avalia a possibilidade de redução do volume de água utilizados nas descargas das bacias sanitárias comercializadas no Brasil. Relatório Técnico 1287/RT001. 2016. Disponível em: http://www.asfamas.org.br/datafiles/uploads/relatorio-tecnico-estudo-que-avaliou-a-possibilidade-de-reduzir-o-consumo-de-agua.pdf. Acesso em: 1 dez. 2024.

ASHRAE, American Society of Heating, Refrigerating and Air-Conditioning Engineers. Inc. Chapter 48. Noise and vibration. In ASHRAE Handbook; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2024.

ASPE, American Society of Plumbing Engineers (ASPE). Plumbing Engineering Design Handbook, Volume 1: Fundamentals of Plumbing Engineering, Chapter 10: Acoustic in Plumbing. 2021. Disponível em: https://aspe.org/product/plumbing-engineer-design-handbook-vol-1-2021/. Acesso em: 24 nov. 2024.

BENJAMIN, Danglot, OSCAR, Vera-Perez, ZHONGXING, Yu, ANDY Zaidman, MARTIN Monperrus, BENOIT Baudry. A snowballing literature study on test amplification, Journal of Systems and Software, v. 157, n. 110398, 2019. doi: https://doi.org/10.1016/j.jss.2019.110398. Disponível em: https://www.sciencedirect.com/science/article/pii/S0164121219301736. Acesso em: 01 dez. 2024.

BISTAFA, S. R. Conscientização para o problema do ruído nas instalações hidráulicas prediais. Revista de Acústica e Vibrações. [S. l.], v. 6, n. 09, p. 5–17, 1991. DOI: 10.55753/aev.v6e09.73.

BISTAFA. S. R. Acústica aplicada ao controle de ruído. 3 ed. São Paulo: Blucher, 2018, 436p. ISBN 978-85-212-1283-6.

BLEICHVEL, N. C. T.; KALBUSCH, A.; IAFIGLIOLA, L. G. Desempenho de sistemas prediais: avaliação de ruído em edifícios residenciais. In: ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, 17., 2018, Foz do Iguaçu. Anais [...]. Porto Alegre: ANTAC, 2018.

BOCKORNI, Beatriz Rodrigues Silva; GOMES, Almiralva Ferraz. A amostragem em snowball (bola de neve) em uma pesquisa qualitativa no campo da administração. Revista de Ciências Empresariais da UNIPAR, [S. l.], v. 22, n. 1, 2021. DOI: 10.25110/receu.v22i1.8346. Disponível em: https://revistas.unipar.br/index.php/empresarial/article/view/8346. Acesso em: 3 dez. 2024.

BSI, British Standards Institution. BS 8233: Guidance on sound insulation and noise reduction for buildings, London: BSI, 2014. Disponível em: https://knowledge.bsigroup.com/products/guida nce-on-sound-insulation-and-noise-reductionfor-buildings/standard. Acesso em: 24 nov. 2024.

CANIATO, M.; BETTARELLO, F.; SCHMID, C.; FAUSTI, P. The use of numerical models on service equipment noise prediction in heavyweight and lightweight timber buildings. Building Acoustics, Thousand Oaks, Califórnia, EUA, v. 26, n. 1, p. 35-55, 2019. DOI 10.1177/1351010X18794523. Disponível em: https://doi.org/10.1177/1351010X18794523. Acesso em: 24 set. 2024.

DIN, Deutsches Institut Für Normung. EN 4109-1:2018: DE - Schallschutz im Hochbau. Teil 1: Mindestanforderungen. Protection acoustic dans le mâtiment – Partie 1: Exigences minimales. Berlin: 2018, 30p. Disponível em: https://www.muehlenbecker-land.de/fileadmin/Dateien/Dateien/Bauen___Wohnen/Bauleitplanung_43/DIN/DIN_4109-1.pdf. Acesso em: 18 nov. 2024.

DIN, Deutsches Institut für Normung. EN 14366-1:2023: Bauakustik - Messung von Luftschall und Körperschall von gebäudetechnischen Anlagen im Prüfstand - Teil 1: Anwendungsregeln für Abwasserinstallationen; Deutsche Fassung, 2023. Disponível em: https://www.din.de/de/mitwirken/normenausschuesse/nmp/veroeffentlichungen/wdc-beuth:din21:369764687. Acesso em: 18 nov. 2024.

DEMIREL, F. Noise caused by the usage of water piping in apartment building structures. Building and Environment, Amsterdã, v. 41, n. 4, p. 512 – 519, 2006. DOI 10.1016/j.buildenv.2005.03.003. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0360132305001198. Acesso em: 24 set. 2024.

CEN. European Committee for Standardization. EN 817:2024: Sanitarne armature - Mehanski mešalni ventili (PN 10) - Splošne tehnične zahteve. Brussels: European Committee for Standardization, 2024. Disponível em: https://cdn.standards.iteh.ai/samples/69903/c8776737bd7944249fd388bfeba787cf/SIST-EN-817-2024.pdf. Acesso em: 24 set.2024.

CEN, European Committee for Standardization. EN 817:2008: Sanitary tapware – Mechanical mixing valves (PN 10) – General technical specifications. Brussels: CEN, 2008.

CEN, European Committee for Standardization. EN 14366: Laboratory measurement of airborne and structure-borne sound from service equipment — Part 1: Application rules for wastewater installations. Brussels: CEN, 2023.

EICHLER, B. C.; COELHO, F. C.; ROCHA, D. G.; ROCHA, R. R. Desempenho acústico de isolamento a ruído aéreo de lajes em banheiros: comparativo entre resultados previsionais pela ISO 12354-1:2017 e ensaios in loco pela ABNT NBR ISO 10052:2022. In: ENCONTRO DA SOCIEDADE BRASILEIRA DE ACÚSTICA, SOBRAC, 30, 2023, Natal. Anais [...]. Natal: Universidade Federal do Rio Grande do Norte, 2023, p.433-441. Disponível em: https//www.even3.com.br/anais/sobracnatal2023/667042-DESEMPENHO-ACUSTICO-DE-ISOLAMENTO-A-RUIDO-AEREO-DE-LAJES-EM-BANHEIROS--COMPARATIVO-ENTRE-RESULTADOS-PREVISIONAIS-. Acesso em: 03 mar. 2024.

FUCHS, H. V. Generation and control of noise in water supply installations: Part 1: Fundamental aspects. Applied Acoustics, v.16, n.5, p. 325-346, 1983. Disponível em: https://doi.org/10.1016/0003-682x(83)90025-7. Acesso em: 24 nov. 2024.

FUCHS, H. V. Generation and control of noise in water supply installations. Part 2: Sound source mechanisms, Applied Acoustics, v.38, n.1, 1993, p. 59 – 85, 1993. Doi:10.1016/0003-682x(93)90041-4.

GIBBS, B. M.; VILLOT, M. Structure-borne sound in buildings: Advances in measurement and prediction methods. Noise Control Engineering Journal, Estados Unidos, v. 68, n.1, p. 1-30, 2020. Disponível em: https://doi.org/10.3397/1/37681. Acesso em 24 set.2024.

GOYDKE, H. New international standards for building and room acoustics. Applied Acoustics, Amsterdã, v. 52, n. 3, p.185-196, 1997. Disponível em: https://doi.org/10.1016/S0003-682X(97)00045-5. Acesso em: 24 set. 2024.

ISO, International Organization for Standardization. ISO 12354-5:2017: Acoustics - Estimation of acoustic performance of buildings from the performance of elements - Part 5: Sound levels due to the service equipment. Genebra: ISO, 2017.

ISO, International Organization for Standardization. ISO 3822-1:2021: Acoustics — Laboratory tests on noise emission from appliances and equipment used in water supply installations - Method of measurement, Genebra: ISO, 2021. Disponível em: https://www.iso.org/standard/22121.html. Acesso em: 20 nov. 2024.

ISO, International Organization for Standardization. ISO 10052:2021: Acoustics — Field measurements of airborne and impact sound insulation and of service equipment sound — Survey method, Genebra: ISO, 2021. Disponível em: https://www.iso.org/obp/ui/en/#iso:std:iso:10052:ed-2:v1:en. Acesso em: 20 nov.2024.

ISO, International Organization for Standardization. ISO/TS 19488:2021: Acoustics – Acoustic classification of dwellings. Genebra: ISO, 2021. Disponível em: https://www.iso.org/standard/77742.html. Acesso em: 24 nov. 2024.

JEON, J. Y.; JO, H. I.; KIM, S. M; YANG, H. S. Subjective and objective evaluation of water-supply and drainage noises in apartment buildings by using a head-mounted display. Applied Acoustics, Amsterdã, v. 148, p. 289-299, Jan. 2019. Disponível em: https://doi.org/10.1016/j.apacoust.2018.12.037. Acesso em: 24 set. 2024.

JEON, J. Y.; RYU, J. K.; LEE, P. J. A quantification model of overall dissatisfaction with indoor noise environment in residential buildings. Applied Acoustics, Reino Unido, v. 71, n.10, p. 914-921, Jun 2010. DOI 10.1016/j.apacoust.2010.06.001. Disponível em: https://doi.org/10.1016/j.apacoust.2010.06.001. Acesso em: 27 set. 2024.

KITAMURA, T., SATO, S., SHIMOKURA, R., ANDO, Y. Measurement of temporal and spatial factors of a flushing toilet noise in a downstairs bedroom, Journal of Temporal Design in Architecture and the Environment, v.2, n.1, p.13–19, 2002.Disponível em: http://www.jtdweb.org/journal/2002/002_kitamura.pdf. Acesso em: 27 set.2024.

KOREA, Ministery of Environment of South Korea, Green Standard for Energy and Environmental Design (G-SEED). Seoul: Ministry of Environment, 2016.

KS, Korean Standards Association. KS F 2870: Standard test method of water supply noise in apartment bathroom; Korea Standard Association (KS): Seoul, Korea, 2021a.

KS, Korean Standards Association. KS F 2871: Standard test method of drainage noise in apartment bathroom; Korea Standard Association (KS): Seoul, Korea, 2021b.

KS, Korean Standards Association. KS F 2872: Evaluation of Noise from Water Supply and Drainage Systems in Apartment Bathrooms; Korea Standard Association (KS): Seoul, Korea, 2023.

MIROWSKA, M. Problems of Measurement and Evaluation of Low-Frequency Noise in Residential Buildings in the Light of Recommendations and the New European Standards. Journal of Low Frequency Noise, Vibration and Active Control, [S. l.], v. 22, n. 4, p. 203 – 208, 2005. DOI: https://doi.org/10.1260/1475473054479901.

NASCIMENTO, N. L. F.; CURADO, F. C. C; SALES, G. O.; ROCHA, D. G. Avaliação acústica de Sistemas Prediais e Hidrossanitárias Conforme Normas NBR 10152:2017 E NBR 15575:2021. In: ENCONTRO DA SOCIEDADE BRASILEIRA DE ACÚSTICA - SOBRAC, 30, 2023. Anais [...]. Natal: UFRN, 2023. DOI: 10.29327/sobracnatal2023.667120. Disponível em: https//www.even3.com.br/anais/sobracnatal2023/667120-AVALIACAO-ACUSTICA-DE-SISTEMAS-PREDIAIS-E-HIDROSSANITARIAS-CONFORME-NORMAS-NBR-10152-2017-E-NBR-15575-2021. Acesso em: 03 mar. 2024.

O´NEIL, C. Providing 'good', 'better' or 'best' acoustical plumbing system proposals for cost-sensitive clients. Canadian Acoustics, Canadá, v. 38, n.4, p. 43-45, Dez, 2010. Disponível em: https://jcaa.caa-aca.ca/index.php/jcaa/article/view/2322. Acesso em: 27 set. 2024.

PAVANELLO, L. R.; PAIXAO, D. X.; LUNGE, A. P. Ruído em instalações hidrossanitárias: o desafio em realizar medições. In: ENCONTRO SOCIEDADE BRASILEIRA DE ACÚSTICA - SOBRAC, 25., 2014, Campinas. Anais [...]. Encontro da Sociedade Brasileira de Acústica, 2014.

PETERSEN. K.; VAKKALANKA S.; KUZNIARZ, L. Guidelines for conducting systematic mapping studies in software engineering: An update. Information and Software Technology. v. 64, p. 1-18, 2015. DOI:https://doi.org/10.1016/j.infsof.2015.03.007.

ROCHA, R. R; GINER, J. C.; PRADO, R. T. A. Análise e caracterização de soluções acústicas para mitigar os ruídos oriundos de instalações hidrossanitárias prediais. In: ENCONTRO DA SOBRAC, 28., 2018, Porto Alegre. Anais [...]. Porto Alegre: 2018, p.10.

ROMEU, J.; JIMÉNEZ, S.; CAPDEVILA, R. Noise emitted by water supply installations, Applied. Acoustics. v. 65, n.4 p.401– 419, 2004. Disponível em: https://doi.org/10.1016/j.apacoust.2003.10.001. Acesso em: 28 set. 2024.

ROSSI, C.; LOURENÇO, W. M.; SANTOS, E. H. L.; MELLER, G.; TOCHETTO, J. L. D.; SANTOS, J. C. P. Análise do comportamento acústico de sala por tempo de reverberação de Sabine e Eyring. In: SALÃO INTERNACIONAL DE ENSINO, PESQUISA E EXTENSÃO - SIEPE, 10, 2018, Universidade Federal de Pampa, Anais [...], Santana do Livramento, 2018, p.6.

RUSTUM, R.; EMMANUEL, A. C. The effects of noise from internal drainage systems on daily human activity and sleep patterns. International Journal of Geomate, Japan, v. 25, n.108, p.249-256, Ago, 2023. Disponível em: https://doi.org/10.21660/2023.108.s8581. Acesso em: 28 set. 2024.

RYU, J.; SONG, H. Comparison between single-number quantities for rating noises from sanitary installations in residential buildings by objective and subjective methods. Building and Environment, v. 164, n. 106378, 2019. Disponível em: https://doi.org/10.1016/j.buildenv.2019.106378. Acesso em: 28 set. 2024.

SCHWARTZ, S. Linking noise and vibration to sick building syndrome in office buildings. Air and Waste Management, p. 26-28, Mar. 2008. Disponível em: https://www.scopus.com/record/display.uri?eid=2-s2.0-42449111971&origin=inward&txGid=f4f49feb364afcf2d889ef368b1809e1. Acesso em: 28 set. 2024.

TIGRE BRASIL. Ficha Técnica. Linha esgoto Tigre Redux. 2024, 149 p. Disponível em: https://tigrecombr-prod.s3.amazonaws.com/default/files/produtos/ficha-tecnica/ficha-tecnica-linha-Tigre-Redux.pdf. Acesso em: 03 dez. 2024.

WANG, Y.; DENG, X.; CHI, B.; CUI, Y. Study on the Impact of Drainage Noise in Residential Bathrooms Based on Finite Element Simulation. Archives of Acoustics, Polônia, v. 49, n. 3, p. 399-417, 2024. Doi: 10.24425/aoa.2024.148799. Disponível em: https://acoustics.ippt.pan.pl/index.php/aa/article/view/3870. Acesso em: 10 out. 2024.

WASSILIEFF, C.; DRAVITZKI, V. Prediction of Noise from Plumbing Attached to Light Timber-Framed Walls. Applied Acoustics, Amsterdã, v. 37, p. 213-232, 1992. Disponível em: https://doi.org/10.1016/0003-682X(92)90004-C. Acesso em: 10 out. 2024.

YANG, H. S.; CHO, H. M.; KIM, M. J. Field. Measurements of Water Supply and Drainage Noise in the Bathrooms of Korea’s Multi-Residential Buildings. Applied Sciences, v. 6, n.372, 2016. Doi:10.3390/app6110372. Disponível em: https://www.mdpi.com/journal/applsci. Acesso em: 10 out. 2024.

Published

2025-08-16

Issue

Section

Technology, Environment and Sustainability

How to Cite

Noise control in plumbing systems: literature review. (2025). Paranoá, 18, e54350. https://doi.org/10.18830/1679-09442025v18e54350

Similar Articles

1-10 of 35

You may also start an advanced similarity search for this article.