Energy performance of a nZEB urban commercial building under the influence of a tropical climate and climate change
DOI:
https://doi.org/10.18830/1679-09442024v17e43115Keywords:
Performance analysis, Energy efficiency, Photovoltaic energy, Urban Building Energy Modeling (UBEM), Climate change, Future scenariosAbstract
Nearly Zero Energy Buildings (nZEB) consist of buildings whose design integrates measures for optimizing energy consumption and renewable energy production systems, sufficient to nearly nullify their energy demand. However, it is known that climate changes can significantly impact the existing energy infrastructure. Therefore, the aim of this article is to analyze the applicability of this concept for urban buildings in tropical cities. Scenarios were simulated using computational models to assess the energy performance of an nZEB commercial building in the city of Vitória (Brazil), under the influence of parameters from urban configuration and climate change projections for 2020, 2050, and 2080. As a result, an increase of 1.17 ºC was observed in the annual average temperature of the external air, and a reduction of 3.85% in photovoltaic energy generation capacity was noted due to the urban heat island effect. In future projections, an increase of up to 23.35% in total consumption and 4.61% in energy production was observed. Furthermore, the cooling system stands out as the main contributor to the building's energy consumption.
References
AGÊNCIA DE SERVIÇOS PÚBLICOS DE ENERGIA DO ESTADO DO ESPÍRITO SANTO. Energia solar no Espírito Santo - Tecnologias, aplicações e oportunidades. Vitória, ES, 2013.
ALVI, Shahzad; MAHMOOD, Zafar; NAWAZ, Shahzada. Dilemma of direct rebound effect and climate change on residential electricity consumption in Pakistan. Energy Reports, v. 4, p. 323-327, 2018. Available on: https://doi.org/10.1016/j.egyr.2018.04.002. Accessed: 16 May 2020.
AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR-CONDITIONING ENGINEERS – ASHRAE. ANSI/ASHRAE Standard 55-2017: Thermal Environmental Conditions for Human Occupancy. United States of America: [s.n.]. 2017a.
AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR-CONDITIONING ENGINEERS - ASHRAE. ASHRAE Handbook - Fundamentals. 2017. ed. Georgia, United States of America: ASHRAE, 2017b.
ATHIENITIS, Andreas; O'BRIEN, William. Net ZEB case studies. Modeling, Design, and Optimization of Net‐Zero Energy Buildings, p. 241-350, 2015. ISBN: 9783433604625.
BOCALLATTE A.; FOSSA, M.; MÉNÉZO, C. Best arrangement of BIPV surfaces for future NZEB districts while considering urban heat island effects and the reduction of reflected radiation from solar facades. Renewable Energy, v. 160, p. 686-697. 2020. Available on: https://doi.org/10.1016/j.renene.2020.07.057. Accessed: 28 Aug 2020.
BUENO, Bruno; NORFORD Leslie; HIDALGO Julia; PIGEON Grégoire. The urban weather generator. Journal of Building Performance Simulation, v. 6, p. 269-281. 2013. Available on: https://doi.org/10.1080/19401493.2012.718797. Accessed: 13 Nov 2020.
CAO, Xiaodong; DAI, Xilei; LIU, Junjie. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy and buildings, v. 128, p. 198-213, 2016. Available on: https://doi.org/10.1016/j.enbuild.2016.06.089. Accessed: 6 May 2020.
CIDADE-BRASIL. Estado do Espírito Santo. Município de Vitória. 2020. Available on: https://www.cidade-brasil.com.br/municipio-vitoria.html. Accessed: 30 Dec 2020.
CONSELHO BRASILEIRO DE CONSTRUÇÕES SUSTENTÁVEIS - CBCS. Desempenho Energético Operacional em Edificações: Relatório Final-Benchmarking de escritórios corporativos e recomendações para certificação DEO no Brasil. São Paulo: CBCS, 2015.
COCCO, Daniel; COSTA Alexandre. M. S. Effect of a global warming model on the energetic performance of a typical solar photovoltaic system. Case Studies in Thermal Engineering, v. 14, p. 100450. 2019. Available on: https://doi.org/10.1016/j.csite.2019.100450. Accessed: 20 Oct 2020.
CORREA, Wesley de Souza Campos. Campo térmico e higrométrico da Regional Praia do Canto no município de Vitória (ES). 2014. Dissertação (Mestrado em Geografia) – Universidade Federal do Espírito Santo, Vitória, 2014.
DAVILA, Carlos Cerezo; REINHART, Christoph; BEMIS, Jamie. Modeling Boston: A workflow for the generation of complete urban building energy demand models from existing urban geospatial datasets. Energy, v. 117, p. 237-250, 2016. Available on: https://doi.org/10.1016/j.energy.2016.10.057. Accessed: 21 Jun 2020.
EMPRESA DE PESQUISA ENERGÉTICA - EPE. Mudanças Climáticas e desdobramentos sobre os estudos de planejamento energético: considerações iniciais. 2018. Available on: http://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-227/topico-457/Mudancas%20Climaticas%20e%20Planejamento%20Energetico.pdf. Accessed: 25 May 2020.
EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Clima. [s.d.]. Available on: https://www.cnpf.embrapa.br/pesquisa/efb/clima.htm. Accessed: 13 Nov 2020.
FERRARA, Maria; FABRIZIO, Enrico. Cost optimal nZEBs in future climate scenarios. Energy Procedia, v. 122, p. 877-882, 2017. Available on: https://doi.org/10.1016/j.egypro.2017.07.377. Accessed: 02 Jun 2020.
FRAGA, Anderson Azevedo. Potencial de adoção do conceito Zero Energy para edificações comerciais em Vitória/ES. 2020. Dissertação (Mestrado) – Curso de Arquitetura e Urbanismo, Universidade Federal do Espírito Santo, Vitória, 2020. Disponível em: https://sappg.ufes.br/tese_drupal//tese_14274_ANDERSON%20AZEVEDO%20FRAGA%20-%20VERS%C3O%20FINAL.pdf. Acesso em: 27 mar. 2023.
GRASSHOPPER3D. Grasshopper. 2021. Available on: https://www.grasshopper3d.com/.
GUARDA, Emeli; DOMINGOS, Renata; JORGE, Stefany; DURANTE, Luciane; SANCHES, João Carlos; LEÃO, Marlon; CALLEJAS, Ivan Julio. The influence of climate change on renewable energy systems designed to achieve zero energy buildings in the present: A case study in the Brazilian Savannah. Sustainable Cities and Society. v. 52, p. 101843. 2020. Available on: https://doi.org/10.1016/j.scs.2019.101843. Accessed: 02 Sep 2020.
JENTSCH, Mark; JAMES, Patrick; BOURIKAS, Leonidas; BAHAJ, AbuBakr. Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renewable Energy, v. 55, p. 514-524. 2013. Available on: https://doi.org/10.1016/j.renene.2012.12.049. Accessed: 15 May 2020.
INSTITUTO NACIONAL DE METEOROLOGIA (INMET). Clima. NorMays climatológicas. Gráficos. Available on: https://clima.inmet.gov.br/GraficosClimatologicos/DF/83377. Accessed: 13 Nov 2020.
INTERNATIONAL ENERGY AGENCY (IEA). World Energy Outlook 2021. 2021. Available on: https://iea.blob.core.windows.net/assets/4ed140c1-c3f3-4fd9-acae-789a4e14a23c/WorldEnergyOutlook2021.pdf. Accessed: 20 Apr 2022.
INTERNATIONAL ENERGY AGENCY (IEA). Electricity Market Report - January 2022. 2022. Available on: https://www.iea.org/reports/electricity-market-report-january-2022. Accessed: 24 Apr 2022.
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, p. 151. 2014. ISBN: 978-92-9169-143-2.
INSTITUTO JONES DOS SANTOS NEVES. Espírito Santo em mapas. 3 ed. Vitória, 2011. Available on: http://www.ijsn.es.gov.br/ConteudoDigital/20120823_es_em_mapas_3_edicao.pdf. Accessed: 13 Nov 2020.
HONG, Tianzhen; CHEN, Yixing; LUO, Xuan; LUO, N.; LEE, Sang Hoon. Ten questions on urban building energy modeling. Building and Environment, v. 168. 2020. Available on: https://doi.org/10.1016/j.buildenv.2019.106508. Accessed: 26 May 2020.
KURNITSKI, Jarek; ALLARD, Francis; BRAHAM, Derrick; GOEDERS, Guillaume; HEISELBERG, Per; JAGEMAR, Lennart; KOSONEN, Risto; LEBRUN, Jean; MAZZARELLA, Livio; RAILIO, Jorma; SEPPÄNEN, Olli; SCHMIDT, Michael; VIRTA, Maija. How to define nearly net zero energy buildings nZEB. Rehva Journal, v. 48, n. 3, p. 6-12, 2011. Available on: https://www.rehva.eu/fileadmin/hvac-dictio/03-2011/How_to_define_nearly_net_zero_energy_buildings_nZEB.pdf. Accessed: 5 May 2020.
LIMA, Izabella; SCALCO, Veridiana; LAMBERTS, Roberto. Estimating the impact of urban densification on high-rise office building cooling loads in a hot and humid climate. Energy and Buildings, v. 182, p. 30-44. 2019. Available on: https://doi.org/10.1016/j.enbuild.2018.10.019. Accessed: 26 May 2020.
MAUREE, Dasaraden; NABONI, Emanuele; COCCOLO, Silvia; PERERA, Amarasinghage; NIK, Vahid; SCARTEZZINI, Jean-Louis. A review of assessment methods for the urban environmental and its energy sustainability to guarantee climate adaptation of future cities. Renewable and Sustainable Energy Reviews, v. 112, p. 733-746. 2019. Available on: https://doi.org/10.1016/j.rser.2019.06.005. Accessed: 11 May 2020.
MCNEEL & ASSOCIATES. Rhinoceros. Available on: https://www.rhino3d.com/. Accessed: 7 May. 2021.
MOLDOVAN, M.; VISA, I.; DUTA, A. Future trends for solar energy use in nearly zero energy buildings. Advances in Solar Heating and Cooling, p. 547-569. 2016. Available on: https://www.sciencedirect.com/science/article/pii/B9780081003015000205. Accessed: 25 Apr 2022.
NAKANO, Aiko; BUENO, Bruno; NORFORD, Leslie; REINHART, Christoph. Urban Weather Generator: a novel workflow for integrating urban heat island effect within urban design process. 14th Conference of International Building Performance Simulation Association, BS2015, 7-9 December, 2015, Hyderabad, India, IBPSA, 2015. Available on: https://dspace.mit.edu/handle/1721.1/108779. Accessed: 11 May 2020.
NATANIAN, Jonathan; ALEKSANDROWICZ, Or; AUER, Thomas. A parametric approach to optimizing urban form, energy balance and environmental quality: The case of Mediterranean districts. Applied Energy, v. 254, p. 113637. 2019. Available on: https://doi.org/10.1016/j.apenergy.2019.113637. Accessed: 05 May 2020.
NATANIAN, Jonathan; AUER, Thomas. Beyond nearly zero energy urban design: A holistic microclimatic energy and environmental quality evaluation workflow. Sustainable Cities and Society, v. 56, p. 102094. 2020. Available on: https://doi.org/10.1016/j.scs.2020.102094. Accessed: Accessed: 15 May 2020.
REINHART, Christoph; DAVILA, Carlos Cerezo. Urban building energy modeling - A review of a nascent field. Building and Environment, v. 97, p. 196-202. 2016. Available on: https://doi.org/10.1016/j.buildenv.2015.12.001. Accessed: 31 Aug 2020.
SHEN, Pengyuan; LIOR, Noam. Vulnerability to climate change impacts of present renewable energy systems designed for achieving net-zero energy buildings. Energy, v. 14, p. 1288-1305. 2016. Available on: https://doi.org/10.1016/j.energy.2016.07.078. Accessed: 03 Oct 2020.
WORLD METEOROLOGICAL ORGANIZATION (WMO). State of Global Climate 2021 - WMO Provisional report. 2021. Available on: https://library.wmo.int/doc_num.php?explnum_id=10859. Accessed: 20 Apr 2022.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Paranoá
This work is licensed under a Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista. http://creativecommons.org/licenses/by/4.0
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).