Variação do potencial bioclimático em São Paulo frente ao cenário de mudanças climáticas
DOI:
https://doi.org/10.18830/1679-09442024v17e43180Palavras-chave:
Estratégias Bioclimáticas. Série Histórica. Mudanças Climáticas.Resumo
As preocupações globais com as condições de conforto térmico devido às mudanças climáticas têm se tornando pauta prioritária do século XXI. Esta pesquisa tem como objetivo a investigação da evolução climática, das estratégias bioclimáticas passivas de projeto, e das horas de conforto e desconforto, utilizando como base a série histórica climática da cidade de São Paulo. A metodologia consiste em elaboração do perfil climático da região de estudo utilizando a série histórica, e análise do potencial bioclimático por meio de estratégias bioclimáticas de projeto, utilizando o software AnalysisBIO. Os resultados apresentam tendências de variações nas amplitudes térmicas, podendo induzir ao estresse térmico por calor dos ocupantes, e as porcentagens de desconforto foram mais frequentes nos anos recentes. A estratégia de sombreamento apresenta maiores valores de horas requeridas em anos mais recentes, apresentando aumento em 3,1 pontos percentual em 2018 em relação a 1989. A investigação das estratégias bioclimáticas de forma evolutiva, apresenta recomendações que deveriam ser aplicadas hoje nos projetos para que as edificações garantam condições de conforto térmico em São Paulo nos próximos anos.
Referências
ALMUSAED, A. Biophilic and bioclimatic architecture: analytical therapy for the next generation of passive sustainable architecture. Springer, London; New York, 2011
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 15.575-1: Edificações habitacionais - Desempenho - Requisitos gerais. Rio de Janeiro, 2013.
BAI, L.; YANG, L.; SONG, B. The impact of climate change on thermal climate zones and residential energy efficiency designs during the past decades in China. Adv. Build. Energy Res. v. 0, p. 1–14, 2019. DOI: https://doi.org/10.1080/17512549.2019.1653367.
BIENVENIDO-HUERTAS, D.; RUBIO-BELLIDO, C.; MARIN-GARCIA, D.; CANIVEELL, J. Influence of the Representative Concentration Pathways (RCP) scenarios on the bioclimatic design strategies of the built environment. Sustainable Cities and Society, 2021. DOI: https://doi.org/10.1016/j.scs.2021.103042
CALLEJAS, I.; J.; A.; APOLONIO, R.; M.; GUARDA, E.; L.; A.; DURANTE, L.; C.; ROSSETI, K.; A.; C.; ROSETA, F.; AMARANTE, L.; M. Bermed Earth-Sheltered Wall for Low-Income House: Thermal and Energy Measure to Face Climate Change in Tropical Region. Applied Sciences, v. 11, 2021. DOI: https://doi.org/10.3390/app11010420
CASAGRANDE, B. G. Cenários climáticos futuros: Diagnóstico prospectivo do desempenho termoenergético de edifícios comerciais no Brasil para o século XXI. Dissertação, f.136 (Mestrado), Universidade Federal do Espirito Santo, 2013.
CASQUERO-MODREGO, N.; GONI-MODREGO, M. Energy retrofit of an existing affordable building envelope in Spain, case study. Sustainable Cities and Society, v. 44, p. 395-405, 2019. DOI: https://doi.org/10.1016/j.scs.2018.09.034. Acesso em: 05 de setembro de 2021.
CLIMATE.ONEBUILDINGS.ORG. (2020) Repository of free climate data for building performance simulation. WMO Region 3 - South America. Disponível em: http://climate.onebuilding.org/. Acesso em: 9 jun. 2021.
CRAWLEY, D.; B.; LAWRIE, L.; K. Rethinking the TMY: Is the ‘typical’ meteorological year best for building performance simulation? 14th Conference of International Building Performance Simulation Association, India, Dec 7-9, 2015. Acesso em: 05 de setembro de 2021.
FERNANDES, J.; T. Código de obras e edificações do DF: Inserção de conceitos bioclimáticos, conforto térmico e eficiência energética. Dissertação (mestrado) do Programa de Pós-Graduação em Arquitetura e Urbanismo, Universidade de Brasília, 2009.
FLORES-LARSEN, S.; FILIPPÍN, C.; BAREA, G. Impact of climate change on energy use and bioclimatic design of residential buildings in the 21st century in Argentina. Energy and Buildings, v. 184, p. 216-226. 2019. DOI: https://doi.org/10.1016/j.enbuild.2018.12.015
FROTA, A.; B.; SCHIFFER, S.; T.; R. Manual de conforto térmico. 5° edição, p. 243, 2003.
GAITANI, N.; MIHALAKAKOU, G.; SANTAMOURIS, M. On the use of bioclimatic architecture principles in order to improve thermal comfort conditions in outdoor spaces. Building and Environment, v. 42, p. 317-324, 2007. DOI: https://doi.org/10.1016/j.buildenv.2005.08.018. Acesso em: 05 de setembro de 2021.
GIVONI, B. Comfort climate analysis and buildings design guidelines. Energy and Buildings, v.18, n.1, p-11-23, 1992.
GUAN, L. Energy use, indoor temperature and possible adaptation strategies for air-conditioned office buildings in face of global warming. Build. Environ, v. 55, p.8-19, 2012. DOI: https://doi.org/10.1016/J.BUILDENV.2011.11.013.
GUAN, L. Preparation of future weather data to study the impact of climate change on buildings. Build. Environ, v. 44, p.793-800, 2009. DOI: https://doi.org/10.1016/J.BUILDENV.2008.05.021.
GUARDA, E. L. A.; DURANTE, L. C.; CALLEJAS, I. J. A. Impacto das mudanças climáticas no ambiente térmico interno de habitação unifamiliar em Cuiabá-MT. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 11, p. e020031, 2020. DOI: 10.20396/parc.v11i0.8657188.
GUARDA, E. L. A; DURANTE, L. C; CALLEJAS, I. J. A. Efeitos do Aquecimento global nas estratégias de projeto das edificações por meio de cartas bioclimáticas. Revista Engineering and Science (E&S), v.7, n.2, p.54-70. Cuiabá, 2018. DOI: https://doi.org/10.18607/es201876827
GUARDA, E.; L.; A.; DOMINGOS, R.; M.; A.; JORGE, S.; H.; M.; DURANTE, L.; C.; SANCHES, J.; C.; M.; LEÃO, M.; CALLEJAS, I.; J.; A. The influence of climate change on renewable energy systems designed to achieve zero energy buildings in the present: A case study in the Brazilian Savannah. Sustainable Cities e Society, v. 52, p. 101843, 2020. DOI: https://doi.org/10.1016/j.scs.2019.101843
GUO, S.; YAN, D.; HONG, T.; XIAO, C.; CUI, Y. A novel approach for selecting typical hot-year (THY) weather data. Appl. Energy, v. 242, p.1634-1648, 2019. DOI: https://doi.org/10.1016/j.apenergy.2019.03.065.
IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Censo 2010. Rio de Janeiro, 2010. Disponível em: <http://censo2010.ibge.gov.br/>. Acesso em: 09 de junho de 2021.
IEA - International Energy Agency. 2019 global status report for buildings and construction: Towards a zero-emission, efficient and resilient buildings and constuction sector. [s.l: s.n.]. Disponível em: https://webstore.iea.org/download/direct/2930?filename=2019_global_status_report_for_buildings_and_construction.pdf
IEA - International Energy Agency. The Future of Cooling Opportunities for energy-efficient air conditioning Together Secure Sustainable. [s. l.], p. 92, 2018. Disponível em: www.iea.org/t&c/
INMET - Instituto Nacional de Meteorologia. Banco de dados históricos da cidade de São Paulo. Disponível em: https://portal.inmet.gov.br/. Acesso em: 9 jun. 2021.
INMET - Instituto Nacional de Meteorologia. Normais Climatologias da cidade de São Paulo. Disponível em: https://portal.inmet.gov.br/. Acesso em: 9 jun. 2021.
IPCC - Intergovernmental Panel on Climate Change. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland. Disponível em: https://www.ipcc.ch/report/ar4/syr/. 2007.
IPCC - Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland. Disponível em: https://www.ipcc.ch/report/ar5/syr/. 2014.
IPCC. Painel Intergovernamental sobre Mudanças Climáticas 2020. Disponível em: https://www.ipcc.ch/index.htm. Acesso em: 8 jun. 2021.
KHAMBADKONE, N. K.; JAIN, R. A bioclimatic analysis tool for investigation of the potential of passive cooling and heating strategies in a composite Indian climate. Building and Environment, v.123, p. 469-493, 2017. DOI: https://doi.org/10.1016/j.buildenv.2017.07.023
KISHORE, N. Impact of climate change on future bioclimatic potential and residential building thermal and energy future performance in India. Indoor and Build Environment, 2021. DOI: https://doi.org/10.1177/1420326X21993919. Acesso em: 05 de setembro de 2021.
KOSIR, M. Climate Adaptability of Buildings: Bioclimatic Design in the Light of Climate Change. Springer International Publishing, 2019. https://doi.org/10.1007/978-3-030-18456-8. Acesso em: 05 de setembro de 2021.
LABEEE- laboratório de Eficiência Energética em Edificações. Programa Computacional AnalysisBIO, Versão: 2.1.5. Universidade Federal de Santa Catarina. Florianópolis, 2010. Acesso em: 05 de setembro de 2021.
MACIEL, A. A; FORD, B; LAMBERTS, R. Main Influences on the design philosophy and knowledge basis to bioclimatic integration into architecture design – The example of best practices. Building and Environmental, v. 42, p. 3762-3773. 2007. DOI: https://doi.org/10.1016/j.buildenv.2006.07.041
MACIEL, A.; A. Projeto Bioclimático em Brasília: Estudo de caso em edifícios de escritórios. Dissertação (mestrado). Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Santa Catarina, 2002.
MONTERDE, M. A; LOZANO, G. V; GUILLAMÓN, G, I. Sustainable building strategies on regional scale: proposal for the Valencian region in Spain. Indoor and Built Environment, v. 25, p. 1054-1064. 2016. DOI: https://doi.org/10.1177/1420326X16659327
OLGYAY, V. Design with climate. Princeton University Press, New Jersey, USA, 1963.
OMER, A.; M. Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews, v. 12, p.2265-2300, 2008. DOI: https://doi.org/10.1016/j.rser.2007.05.001
PAJEK, L.; KOSIR, M. Implications of present and upcoming changes in bioclimatic potential for energy performance of residential buildings. Build Environmental, v. 127, p. 157-17, 2018. DOI: https://doi.org/10.1016/j.buildenv.2017.10.040
PAJEK, L.; KOSIR, M. Strategy for achieving long-term energy efficiency of European single-family buildings through passive climate adaptation. Applied Energy, v. 297, p. 117116, 2021. DOI: https://doi.org/10.1016/j.apenergy.2021.117116
PAJEK, L; KOSIR, M. Can building energy performance be predicted by a bioclimatic potential analysis? Case study of the Alpine-Adriatic region. Energy and Buildings, v. 139, p. 160-173. 2017. DOI: https://doi.org/10.1016/j.enbuild.2017.01.035
PEEL, M. C; FINLAYSON, B. L; MCMAHON T. A. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, European Geosciences Union, v. 11, p.1633-1644, 2007. DOI: https://doi.org/10.5194/hess-11-1633-2007
RIBEIRO, B.; R. Estratégias bioclimáticas para projeto de edificações com base em dados meteorológicos entre 1960 e 2018 para capitais da região Sul do Brasil. Dissertação (mestrado). Programa de Pós-Graduação em Engenharia Civil, Universidade Tecnológica Federal do Paraná, 2019.
RODRIGUEZ, M.; V.; CORDERO, A.; S.; MELGAR, G.; S.; MARQUEZ, J.; M.; A. Impact of Global Warming in Subtropical Climate Buildings: Future Trends and Mitigation Strategies. Energies, v. 13, 2020. DOI: https://doi.org/10.3390/en13236188
ROUAULT, F.; OSSIO, F.; GONZALEZ-LEVIN, P.; MEZA, F. Impact of climate change on the energy needs of houses in Chile. Sustainability, v. 11, 2019. DOI: https://doi.org/10.3390/su11247068
ROUX, C.; SCHALBART, P.; ASSOUMOU, E.; PEUPORTIER, B. Integrating climate change and energy mix scenarios in LCA of buildings and districts. Appl. Energy. v.184, p.619–629, 2016. DOI: https://doi.org/10.1016/J.APENERGY.2016.10.043.
RUBIO-BELLIDO, C; PULIDO-ARCAS, J. A; CABEZA-LAINEZ, J. M. Adaptation strategies and resilience to climate change of historic dwellings. Sustainability, v. 7, p. 3695-3713. 2015. DOI: https://doi.org/10.3390/su7043695
SERRA, R. Clima, Lugar y Arquitetura. Manual de Diseño Bioclimático. Centro de Investigaciones Energéticas (CIEMAT). Madrid, 1989.
SKARBIT, N.; ÁCS, F.; BREUER, H. The climate of the European region during the 20th and 21st centuries according to Feddema. Int J Climatol, v. 38, p. 2435-2448, 2018. DOI: http://dx.doi.org/10.1002/joc.5346
STAVRAKAKIS, G.; M.; TZANAKI, E.; GEENETZAKI, V.; I.; ANAGNOSTAKIS, G.; GALETAKIS, G.; GRIGORAKIS, E. A computational methodology for effective bioclimatic-design applications in the urban environment. Sustainable Cities and Society, v. 4, p. 41-57, 2012. DOI: https://doi.org/10.1016/j.scs.2012.05.002
SZOKOLAY, S.; V. Introduction to architectural science: the basis of sustainable design. Third edition. London; New York, NY: Routledge; 2014.
TEJERO-GONZÁLEZ, A.; ANDRÉS-CHICOTE, M.; GARCÍA-IBÁNEZ, P.; VELASCO-GOMEZ, E.; REY-MARTINEZ, F.; J. Assessing the applicability of passive cooling and heating techniques through climate factors: An overview. Renewable and sustainable energy reviews, v. 64, p. 727-742, 2016. DOI: https://doi.org/10.1016/j.rser.2016.06.077
THOMÉ, C. Escola Pública Bioclimática Modular Infantil. Trabalho de Conclusão de Curso. Faculdade de Arquitetura e Urbanismo, Universidade do Sul de Santa Catarina (UNISUL). Tubarão, 2006
TRIANA, M.; A.; LAMBERTS, R.; SASSI, P. Should we consider climate change for Brazilian social housing? Assessment of energy efficiency adaptation measures. Energy and Buildings, v. 158, p. 1379-1392, 2018. DOI: https://doi.org/10.1016/J.ENBUILD.2017.11.003
WADDICOR, D. A.; FUENTES, E.; SISÓ, L.; SALOM, J.; FAVRE, B.; JIMÉNEZ, C.; AZAR, M. Climate change and building ageing impact on building energy performance and mitigation measures application: A case study in Turin, northern Italy. Build. Environ, v.102, p.13-25, 2016. DOI: https://doi.org/10.1016/J.BUILDENV.2016.03.003.
YILDIZ, B; EART, S; ALPKAN, L; YILDIZ, H; SEZEN, B. Drives of innovate constructive deviance: A moderated mediation analysis. Procedia – Social and Behavioral Sciences, v. 195, p. 1407-1416. 2015. DOI: https://doi.org/10.1016/j.sbspro.2015.06.436
WANG, S; LIU, Y; CAO, Q; LI, H; YU, Y; YANG, Y. Applicability of passive design strategies in China promoted under global warming in past half century. Building and Environment, v. 195, p. 107777, 2021. DOI: https://doi.org/10.1016/j.buildenv.2021.107777
PÉREZ-ANDREU, V; APARICIO-FERNÁNDEZ, C; MARTÍNEZ-ILBERNÓN, A; VIVACONS. Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate. Energy, v. 165, p. 63–74, 2018. DOI: https://doi.org/10.1016/J.ENERGY.2018.09.015
RAÑESES, M; CHANG-RICHARDS, A; WANG, K; DIRKS, K. Housing for now and the future: A systematic review of climate-adaptive measures. Multidisciplinary Digital Publishing Institute, 2021. DOI: https://doi.org/10.3390/su131267
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2024 Paranoá
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista. http://creativecommons.org/licenses/by/4.0
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).