TRATAMENTO DOS DADOS DA MISSÃO SHUTTLE RADAR TOPOGRAPHY MISSION E COMPARAÇÃO COM MODELO DIGITAL DE TERRENO GERADO POR INTERPOLAÇÃO DE CARTAS TOPOGRÁFICAS

Autores/as

  • Amanda Odelius Teixeira Pinto UnB – Universidade de Brasília – Departamento de Geografia
  • Osmar Abílio de Carvalho Junior UnB – Universidade de Brasília – Departamento de Geografia
  • Renato Fontes Guimarães UnB – Universidade de Brasília – Departamento de Geografia
  • Roberto Arnaldo Trancoso Gomes UnB – Universidade de Brasília – Departamento de Geografia
  • Éder de Souza Martins EMBRAPA Cerrados
  • Mário Diniz de Araújo Neto UnB – Universidade de Brasília – Departamento de Geografia

DOI:

https://doi.org/10.26512/2236-56562004e39747

Palabras clave:

Modelo Digital de Terreno, SRTM, atributos de terreno

Resumen

A representação topográfica é um importante parâmetro para compreender o funcionamento dos geossistemas e ecossistemas. O modelo digital de terreno (MDT) é uma representação numérica da topografia com simples estrutura de dados e amplamente acessível que se torna uma popular ferramenta para a caracterização da paisagem. Assim, o MDT é um dos mais importante parâmetro no modelamento ambiental com Sistema de Informação Geográfica. As aplicações do MDT são muito diversas como modelamento hidrológico, análise da distribuição do solo, estudos climáticos, análise tectônica entre outros. Muitas das análises quantitativas que relacionam a superfície do terreno com variáveis ambientais enfocam o caminho e os locais de contenção de água ou de outras feições hidrológicas. A área de estudo é a bacia do rio São Bartolomeu, localizado na região Centro-Oeste do Brasil. O objetivo desse trabalho é estabelecer uma metodologia para tratar os dados do SRTM de forma a diminuir a presença de ruídos e introduzir feições hidrológicas. A metodologia adota para o tratamento dos dados SRTM pode ser subdivida nas seguintes etapas: (a) extração das curvas de níveis, (b) introdução dos dados de drenagem e (c) interpolação utilizando o programa Topogrid. Posteriormente o novo MDT é comparado com o SRTM original e um MDT gerado pela interpolação de cartas topográficas na escala 1:100.000 usando o método TOPOGRID. A resolução espacial dos MDTs é 90 metros. Os resultados demonstram o tratamento do SRTM apesar de algumas limitações em comparação com o MDT elaborado pelas cartas topográficas, apresenta grande potencial em estudos geomorfológicos.

Referencias

AL-ROUSAN, N., PETRIE, G. (1998). System calibration, geometric accuracy testing and validation of DEM and orthoimage data extracted from SPOT stereopairs using commercially available image processing systems. International Archives of Photogrammetry and Remote Sensing, 32(4): 8– 15.

BELL, J.C., CUNNINGHAM, R.L., HAVENS, M.W. (1992). Calibration and validation of a soil-landscape model for predicting soil drainage class. Soil Science Society of America Journal, 56, 1860– 1866. BELL, J.C., CUNNINGHAM, R.L., HAVENS, M.W. (1994). Soil drainage class probability mapping using a soil-landscape model. Soil Science Society of America Journal, 58: 464–470.

BEVEN, K.J., KIRKBY, M.J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24: 43–69.

BUTTLE, J.M., HOUSE, D.A. (1997). Spatial variability of saturated hydraulic conductivity in shallow macroporous soils in a forested basin. Journal of Hydrology, 203: 127– 142.

CHAPLOT, V., WALTER, C., CURMI, P. (2000). Improving soil hydromorphy prediction according to DEM resolution and available pedological data. Geoderma, 97: 405– 422.

DARBOUX, F., HUANG, C. (2003). An instantaneous-profile laser scanner to measure soil surface microtopography. Soil Science Society of America Journal, 67: 92–99.

DESMET, P.J.J., GOVERS, G. (1996). A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation, 51: 427–433.

ENVIROMENTAL SYSTEMS RESEARCH INSTITUTE (ESRI). (1993). Understanding GIS – The ARC/INFO Method. New York: Wiley.

FIEZ, T.E., PAN, W.L., MILLER, B.C. (1995). Nitrogen use efficiency of winter wheat among landscape positions. Soil Science Society of America Journal, 59: 1666 – 1671.

FUTAMURA, N., TAKAKU, J., SUZUKI, H., IIJIMA T., TADONO T., MATSUOKA M., SHIMADA M., IGARASHI, T. & SHIBASAKI, R. (2002). High resolution DEM generation from ALOS PRISM data - algorithm development and evaluation. In: International Geoscience and Remote Sensing Symposium - IGARSS’02, Toronto, Canada. Proceedings of IGARSS’02. Piscataway, NJ, EUA : IEEE International, 1: 405- 407.

GOODCHILD, M.F., PARKS, B.O., STEYAERT, L.T. (1993). Environmental modeling with GIS. New York: Oxford University Press.

GOTTFRIED, M., PAULI, H., GRABHERR, G. (1998). Prediction of vegetation patterns at the limits of plant life: a new view of the alpine-nival ecotone. Arct. Alp. Res., 30(3): 207–221.

GUIMARÃES, R. F. (2000). Utilização de um modelo de previsão de áreas susceptíveis a escorregamentos rasos com controle topográfico: adequação e calibração em duas bacias de Drenagem. Tese de Doutorado, Departamento de Geologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro.

HARDISTY, J., TAYLOR, D.M., METCALFE, S.E. (1993). Computerized environmental modeling. Chichester: John Wiley & Sons.

HIRANO, A., WELCH, R., LANG, H. (2003). Mapping from ASTER stereo image data: DEM validation and accuracy assessment. ISPRS Journal of Photogrammetry & Remote Sensing, 57: 356– 370

HODGSON, M.E., JENSEN, J.R., SCHMIDT, L., SCHILL, S., DAVIS, B. (2003). An evaluation of LIDAR- and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs. Remote Sensing of Environment, 84(2): 295-308.

HUANG, C. (1995). Empirical analysis of slope and runoff for sediment delivery from interrill areas. Soil Science Society of America Journal, 59: 982–990.

HUTCHINSON, M.F. (1989). A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology, 106: 211-232.

JARVIS, A., RUBIANO, J., NELSON, A., FARROW, A., MULLIGAN, M. (2004). Practical use of SRTM data in the tropics: comparisons with digital elevation models generated from cartographic data. Cali, CO: Centro Internacional de Agricultura Tropical (CIAT).

JELASKA, S.D., ANTONIÉ, O., NIKOLIÉ, T., HRSAK, V., MISKO P., KRIZAN, J. (2003). Estimating plant species occurrence in MTB/64 quadrants as a function of DEMbased variables—a case study for Medvednica Nature Park, Croatia. Ecological Modelling, 170: 333–343.

KOOI, H., BEAUMONT, C. (1996). Large-scale geomorphology: classical concepts reconciled and integrated with contemporary ideas via a surface process model. Journal of Geophysical Research, 101 (B2): 3361–3386.

LU, Z., RYKHUS, R., MASTERLARK, T., DEAN, K.G. (2004). Mapping recent lava flows at Westdahl Volcano, Alaska, using radar and optical satellite imagery. Remote Sensing of Environment, 91: 345–353.

MCKENZIE, N.J., RYAN, P.J., 1999. Spatial prediction of soil properties using environmental correlation. Geoderma, 89: 67–94.

MILIARESIS G.C. (2001). Geomorphometric mapping of Zagros Ranges at regional scale. Computers & Geosciences, 27: 775–786. MONTGOMERY, D.R., SULLIVAN, K., GREENBERG, H.M. (1998). Regional test of a model for shallow landslides. Hydrological Processes, 12: 943-955.

MOORE, I.D., GRAYSON, R.B., LADSON, A.R. (1991). Digital terrain modelling: a review of hydrological, geomorphological and biological applications. Hydrological Processes, 5: 3 - 30.

MOORE, I.D., GESSLER, P.E., NIELSEN, G.A., PETERSON, G.A. (1993). Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 57: 443– 452.

NOVAES PINTO, M. (1993). Geomorfológica do Distrito Federal. In: NOVAES PINTO, M. (Org.) Cerrado: caracterização, perspectivas. Brasília: Editora Universidade de Brasília, pp. 284-344.

O’LOUGHLIN, E.M. (1986). Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resources Research, 22: 794-804.

PARASHAR, S., LANGHAM, E., MCNALLY, J., AHMED, S. (1993). RADARSAT mission requirements and concepts. Canadian Journal of Remote Sensing, 19 (4): 280– 288.

RABUS, B., EINEDER, M., ROTH, A., BAMLER, R. (2003). The suttle radar topography mission – a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry & Remote Sensing, 57: 241-262.

RAMOS, V.M.A. (2003). Modelagem matemática nos estudos dos movimentos de massa: Aplicação de um modelo de previsão de áreas susceptíveis a escorregamento rasos na área do Subúrbio Ferroviário de Salvador (BA). Dissertação de Mestrado, Departamento de Geografia, Universidade de Brasília, Brasília.

RAWLS, W.J., PACHEPSKY, Y.A. (2002). Using field topographic descriptors to estimate soil water retention. Soil Science, 167(7): 423–435.

ROMANO, N. & SANTINI, A. (1997). Effectiveness of using pedotransfer functions to quantify the spatial variability of soil water retention characteristics. Journal of Hydrology, 202: 137– 157.

ROSEN, P., EINEDER, M., RABUS, B., GURROLA, E., HENSLEY, S., KNOEPFLE, W., BREIT, H., ROTH. A. (2001a). SRTM mission cross comparison of X and C band data properties. In: International Geoscience and Remote Sensing Symposium, Sydney, NSW, Australia. Proceedings…, 2: 751-753.

ROSEN, P., HENSLEY, S., GURROLA, E., ROGEZ, F., CHAN, S., MARTIN, J., RODRIGUEZ. E. (2001b). SRTM C-band topographic data: quality assessments and calibration activities. In: International Geoscience and Remote Sensing Symposium, Sydney, NSW, Australia. Proceedings..., 2: 739-741.

SILVA, C.R. (2003). Zoneamento ecológico-econômico da região integrada de desenvolvimento do Distrito Federal e Entorno, Fase I. Rio de Janeiro: CPRM / EMBRAPA / SCO-MI.

SMITH, B., SANDWELL, D. (2003). Accuracy and resolution of shuttle radar topography mission data. Geophysical Research Letters, 30(9): 1467-1470.

STEVENS, N.F., MANVILLE V., HERON, D.W. (2002). The sensitivity of a volcanic flow model to digital elevation model accuracy: experiments with digitised map contours and interferometric SAR at Ruapehu and Taranaki volcanoes, New Zealand. Journal of Volcanology and Geothermal Research, 119: 89-105.

TOUTIN, T. (1999). Error tracking of radargrammetric DEM from RADARSAT images. IEEE Transactions on Geoscience and Remote Sensing, 37(5): 2227–2238.

TOUTIN, T. (2000). Evaluation of radargrammetric DEM from RADARSAT images in high relief areas. IEEE Transactions on Geoscience and Remote Sensing, 38(2): 782– 789.

VALERIANO, M.M. (2004). Modelo digital de elevação com dados SRTM disponíveis para a América do Sul. São José dos Campos: INPE. 72 p. (Coordenação de Ensino, Documentação e Programas Especiais, INPE-10550-RPQ/756).

VAN ZYL, J.J. (2001). The Shuttle Radar Topography Mission (SRTM): A breakthrough in remote sensing of topography. Acta Astronáutica, 48: 5-12.

VASSILOPOULOU, S., HURNI, L., DIETRICH, V., BALTSAVIAS, E. PATERAKI, M., LAGIOS, E., PARCHARIDIS, I. (2002). Orthophoto generation using IKONOS imagery and high-resolution DEM: a case study on volcanic hazard monitoring of Nisyros Island (Greece). ISPRS Journal of Photogrammetry & Remote Sensing, 57: 24– 38.

VOLTZ, M., GOULARD, M. (1994). Spatial interpolation of soil moisture retention curves. Geoderma, 62: 109–123.

WEHR A., LOHR U. (1999). Airborne laser scanning – An introduction and overview. ISPRS Journal of Photogrammetry & Remote Sensing, 54: 68-82.

WELCH, R. (1990). 3-D terrain modeling for GIS applications. GIS World, 3(5): 26–30.

WHITE S.A., WANG Y. (2003). Utilizing DEMs derived from LIDAR data to analyze morphologic change in the North Carolina coastline. Remote Sensing of Environment, 85(1): 39-47.

ZEBKER, H.A., WERNER, C.L., ROSEN, P.A., HENSLEY, S. (1994). Accuracy of topographic maps derived from ERS-1 interferometric radar. IEEE Transactions on Geoscience and Remote Sensing, 32(4): 823-836.

ZHANG, W.M. & MONTGOMERY, D.R. (1994). Digital elevation model grid size, landscape representation, hydrologic simulations. Water Resources Research, 30: 1019-1028

Publicado

2022-01-21

Número

Sección

Articulo

Cómo citar

TRATAMENTO DOS DADOS DA MISSÃO SHUTTLE RADAR TOPOGRAPHY MISSION E COMPARAÇÃO COM MODELO DIGITAL DE TERRENO GERADO POR INTERPOLAÇÃO DE CARTAS TOPOGRÁFICAS. (2022). Revista Espacio Y Geografía, 7(1), 77-97. https://doi.org/10.26512/2236-56562004e39747