Spatio-temporal monitoring of environmental degradation in Cocó State Park – Fortaleza/CE
Case study in the city of Fortaleza using satellite imagery
DOI:
https://doi.org/10.26512/2236-56562025e55573Keywords:
remote sensing, temporal series, environmental analysis, MonitoringAbstract
The occurrences generated mainly by urban development, salt extraction practices that were developed in the past and fire use practices within the park, represent a constant problem that leads to environmental degradation within the Integral Protection Conservation Unit (UC). Therefore the Cocó State Park (PEC), spatio-temporal monitoring becomes indispensable to ensure environmental protection and management, in this sense the use of remote sensing helps in monitoring and tracking the factors that affect the transformation of the park. This work aims to analyze the behavior of vegetation health in environmental conditions between 2015 and 2021, using monthly composites of the Normalized Difference Vegetation Index (NDVI). The methodology used the Google Earth Engine (GEE) geoprocessing platform to process and manipulate remote sensing data. The results of this study mapped land cover changes based on the interpretation of NDVI time trajectories. It was possible to map the fire that largely affected the vegetation within the PEC in 2021. The trajectories of change made it possible to identify the vegetation with the greatest development, with values of 0.7 to 0.9, and the areas with little development, with values of 0.1 to 0.2. In terms of evaluating the method, the map was thematically accurate, with almost 0.84 % overall correspondence in the categories of change.
Downloads
References
ALLEN, H. Satellite remote sensing of land cover change in a mixed agro-silvo-pastoral landscape in the Alentejo, Portugal. International Journal of Remote Sensing, v. 39, n. 14, p. 4663-4683, 2018. DOI: 10.1080/01431161.2018.1440095.
AVOGADRO, E. G.; PADRÓ, J. C. Comparación de métodos de clasificación aplicados a imágenes sentinel-2 y landsat-8, para la diferenciación de plantaciones forestales en entre ríos, argentina. Revista Internacional de Ciencia y Tecnología de la Información Geográfica, n. 24, p. 8, 2019. Disponível em: https://dialnet.unirioja.es/servlet/articulo?codigo=7383249.
BOCA, T.; RODRÍGUEZ, G. Métodos estadísticos de la evaluación de la exactitud de productos derivados de sensores remotos. Instituto de Clima y Agua, INTA Castelar, 2012.
CASTILLEJO, Isabel et al. Evaluation of pixel-and object-based approaches for mapping wild oat (Avena sterilis) weed patches in wheat fields using QuickBird imagery for site-specific management. European Journal of Agronomy, v. 59, p. 57-66, 2014. DOI: 10.1016/j.eja.2014.05.009.
CASTRO, A. S. Farias; MORO, Marcelo Freire; MENEZES, Marcelo OliveiraTeles de. O complexo vegetacional da zona litorânea no Ceará: Pecém, São Gonçalo do Amarante. Acta Botanica Brasilica, v. 26, p. 108-124, 2012.
CASTRO, L. G. Zonas climáticas locais em cidades pequenas: relação entre temperatura e morfologia urbana. 2022. 114 p. Dissertação (Mestrado em Geografia) Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade Federal do Ceará, Fortaleza, 2022. Disponível em: https://repositorio.ufc.br/handle/riufc/68170.
CABRERA, E. et al. Protocolo de Procesamiento Digital de Imágenes para la Cuantificación de la Deforestación en Colombia, Nivel Nacional Escala Gruesa y Fina. Instituto de Hidrología, Meteorología, y Estudios Ambientales, Bogotá, v. 2, p. 44, 2011.
CHÁVEZ, E. S.; PUEBLA, Adonis, M. R. Propuesta metodológica para la delimitación semiautomatizada de unidades de paisaje de nivel local. Revista do departamento de geografia, v. 25, p. 1-19, 2013.
E.S.A. European Space Agency Satellite Missions. 2022. Disponível em: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2.
FERREIRA F. J. Mapeamento das Áreas de Risco de Incêndio Florestal no PEC: A Importância das Áreas Verdes no Atual Cenário Climático. Dissertação (Mestrado em Climatologia e Aplicações nos Países da CPLP e África) –- Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade Estadual do Ceará, 2019.
FERREIRA, J E.; ARAÚJO, A. C. Análise de Ocorrências de Incêndios Florestais na área do PEC, Região Metropolitana de Fortaleza, CE. Revista Brasileira de Meteorologia, v. 36, p. 563-569, 2021.
FIGUEIREDO, G. C.; VIEIRA, C. A. Estudo do comportamento dos índices de Exatidão Global, Kappa e Tau, comumente usados para avaliar a classificação de imagens do sensoriamento remoto. Simpósio Brasileiro de Sensoriamento Remoto, v. 13, p. 5755-5762, 2007.
FREIRES, E.V. et al. Análise da evolução urbana no entorno do estuário do Rio Cocó–Fortaleza/Ceará nos anos de 1985, 1996 e 2007. Geografia Ensino & Pesquisa, v. 17, n. 3, 2013.
FUNDAÇÃO CEARENSE DE METEOROLOGIA (FUNCEME). Fortaleza. Postos Pluviométricos. Fortaleza. 2021. Disponível em: http://www.funceme.br/?page_id=2694.
GAO, W. et al. NDVI-based vegetation dynamics and their responses to climate change and human activities from 1982 to 2020: A case study in the Mu Us Sandy Land, China. Ecological Indicators, v. 137, p. 108745, 2022. DOI: 10.1016/j.ecolind.2022.108745.
GORELICK, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, v. 202, p. 18-27, 2017. DOI: https://doi.org/10.1016/j.rse.2017.06.031.
HUSSAIN, M. et al. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS Journal of photogrammetry and remote sensing, v. 80, p. 91-106, 2013. DOI: 10.1016/j.isprsjprs.2013.03.006.
HOLBEN, Brent N. Characteristics of maximum-value composite images from temporal AVHRR data. International journal of remote sensing, v. 7, n. 11, p. 1417-1434, 1986.
JIANG, L. et al. Analyzing ecological environment change and associated driving factors in China based on NDVI time series data. Ecological Indicators, v. 129, p. 107933, 2021. DOI: 10.1016/j.ecolind.2021.107933.
KLIMAVIČIUS, L. et al. Seasonality and long-term trends of NDVI values in different land use types in the eastern part of the Baltic Sea basin. Oceanologia, 2023. DOI: 10.1016/j.oceano.2022.02.007.
LAMBIN, E. F. et al. Change-vector analysis in multitemporal space: A tool to detect and categorize land-cover change processes using high temporal-resolution satellite data. Remote sensing of environment, v. 48, n. 2, p. 231-244, 1994.
PARUELO, J. M.; DI BELLA, C.; MILKOVIC, M. Percepción Remota y Sistemas de Información Geográfica: Sus aplicaciones en Agronomía y Ciencias Ambientales.1 ed. Buenos Aires: hemisfério sur, 2014.
QGIS Development Team. (2023). QGIS Geographic Information System. Open Source Geospatial Foundation. Disponível em: https://qgis.org.
MOJICA, J. E. P.; DE CASTRO, L G.; DE OLIVEIRA S, J. Detecção de mudanças na cobertura da terra através da implementação do algoritmo Change Vector Analysis (CVA) no PEC–Fortaleza/CE. Revista da Casa da Geografia de Sobral (RCGS), v. 24, n. 3, p. 504-531, 2022.DOI: 10.35701/rcgs. v24.887.
MORO, M. F. et al. Vegetação, unidades fitoecológicas e diversidade paisagística do estado do Ceará. Rodriguésia, v. 66, p. 717-743, 2015.
Plano de Manejo do PEC, Produto 22, Plano de Manejo Consolidado. Secretaria do Meio Ambiente do Ceará, Fortaleza, 2020.
ROUSE, J. W.; HASS, R.H.; SCHELL, J.A.; DEERING, D.W. Monitoring vegetation systems in the Great Plains with ERTS. Earth Resources Technology Satellite, Washington, p.309-317.1974.
Superintendência Estadual do Meio Ambiente do Ceará (SEMACE). Incêndio no Parque Estadual Cocó é debelado pelas forças de Segurança e brigadistas florestais. 2022. Disponível em: https://www.Ceará.gov.br/2021/11/18/incendio-no-parque-estadual-do-cocó-e-debelado-pelas-forcas-de-seguranca-e-brigadistas-florestais/.
SANTOS, J. O. Fragilidade e Riscos Socioambientais em Fortaleza-CE:contribuições ao ordenamento territorial. 2011.331 f. Tese (Doutorado em Geografia), -Pró-Reitoria de Pesquisa e Pós-Graduação. Universidade de São Paulo, 2011.
SPADONI, Gian Luca et al. Analysis of Normalized Difference Vegetation Index (NDVI) multi-temporal series for the production of forest cartography. Remote Sensing Applications: Society and Environment, v. 20, p. 100419, 2020. DOI: 10.1016/j.rsase.2020.100419.
SOUZA, M. J. N. Diagnóstico Geoambiental do Município de Fortaleza: subsídios ao macrozoneamento ambiental e à revisão do Plano Diretor Participativo–PDPFor. Fortaleza: Prefeitura Municipal de Fortaleza, p. 172, 2009.
SOUZA, D. J. L. Pontederiaceae in Flora do Brasil 2020 em construção. Disponível em:http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB13742.
TUCKER, C. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sensing of Environment. Maryland, v. 8, p. 127-150, 1979.
VOROVENCII, L. Applying the change vector analysis technique to assess the desertification risk in the south-west of Romania in the period 1984–2011. Environmental monitoring and assessment, v. 189, n. 10, p. 1-18, 2017. Disponível em: https://link.springer.com/article/10.1007/s10661-017-6234-6.
WANG, N. et al. Graph-based block-level urban change detection using Sentinel-2 time series. Remote Sensing of Environment, v. 274, p. 112993, 2022. DOI:10.1016/j.rse.2022.112993.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Space and Geography Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





