INTEGRATION OF MORPHOMETRIC ATTRIBUTES AND REMOTE SENSING IN PEDOLOGICAL CARTOGRAPHY IN THE NATIONAL PARK BRASILIA, FEDERAL DISTRICT

Authors

  • Marcus Fábio Ribeiro Farias Universidade de Brasília (UnB) - Departamento de Geografia
  • Osmar Abílio de Carvalho Júnior Universidade de Brasília (UnB) - Departamento de Geografia
  • Éder de Souza Martins EMBRAPA Cerrados
  • Roberto Arnaldo Trancoso Gomes Universidade de Brasília (UnB) - Departamento de Geografia
  • Renato Fontes Guimarães Universidade de Brasília (UnB) - Departamento de Geografia
  • Adriana Reatto UniCEUB

DOI:

https://doi.org/10.26512/2236-56562015e40051

Keywords:

terrain attributes, decision tree, digital soil mapping, geographic information systems

Abstract

The conventional land surveying requires long time and high costs. However, the soil mapping can be obtained by correlation with other environmental factors, especially with the parent material, relief and vegetation. This paper aims to develop a methodology for pedological mapping in Brasilia National Park using remote sensing and geographic information system. The soil map was obtained by integration of terrain attributes and vegetation classes. The classification of relief units was made by the decision tree method, from terrain attributes. Cerrado vegetation showed a high correlation with the soil types and is essential to describe the saturation of the landscape areas and their corresponding soils. The integration of relief and vegetation attributes obtained a high correlation with the existing soil map. The methodology allowed an improvement for soil unit cartographic delimitation.

References

ARCOVERDE, G.F.B.; BORGES, M.E.S.; MARTINS, E.S.; RAMOS, V.M.; GUIMARÃES, R.F.; CARVALHO JÚNIOR, O.A.; GOMES, R.A.T. (2005) Mapeamento pedológico em relevos cársticos a partir da análise morfométrica. In: Simpósio Brasileiro de Sensoriamento Remoto, 12., 2005, Goiânia. Anais. São José dos Campos: INPE, p. 1725-1732.

BELL, J.C.; CUNNINGHAM, R.L.; HAVENS, M.W. (1992) Calibration and validation of a soil –landscape model for predicting soil drainage class. Soil Science Society of America Journal 56: 1860–1866.

BELL, J.C.; CUNNINGHAM, R.L.; HAVENS, M.W. (1994) Soil drainage probability mapping using a soil –landscape model. Soil Science Society of America Journal 58: 464– 470.

BREIMAN, L.; FRIEDMAN, J.H.; OLSHEN, R.A. & STONE, C.J. (1984) Classification and regression trees. Belmont, CA: Wadsworth International, 358 p.

BUI, E.N.; LOUGHHEAD, A.; CORNER, R. (1999) Extracting soil –landscape rules from previous soil surveys. Australian Journal of Soil Research 37: 495– 508.

CAMPLING, P.; GOBIN, A.; FEYEN, J. (2002) Logistic modeling to spatially predict the probability of soil drainage classes. Soil Science Society of America Journal, 66: 1390–1401.

CIALELLA, A.T.; DUBAYAH, R.; LAWRENCE, W.; LEVINE, E. (1997). Predicting soil drainage class using remotely sensed and digital elevation data. Photogrammetric Eng. Remote Sensing, 63: 171–178.

CNES - CENTRE NATIONAL D’ETUDES SPATIALES Disponível em http://www. cnes-multimedia.fr/dossiers/spot5/va/pdf/technique_va.pdf acesso em 15 de junho de 2009.

CODEPLAN. (1992) Mapas Topográficos Plani-altimétricos Digitais do Distrito Federal na escala de 1:10.000, Brasília: GDF, CD-ROM.

COUTINHO, L.M. (1990) Fire in the ecology of the Brazilian Cerrado. In: J. G. Goldammer. Fire in the tropical biota: ecossystem processes and global challenges. Berlim, Springer-Verlag, Cap. 6, p.82-103.

DEMATTÊ, J.A.M.; GENÚ, A.M.; FIORIO, P.R.; ORTIZ, J.L.; MAZZA, J.A.; LEONARDO H.C.L. (2004) Comparação entre mapas de solos obtidos por sensoriamento remoto espectral e pelo método convencional Pesquisa Agropecuária Brasileira, 39 (12): 1219-1229.

DIAS, B.F. (1992) Cerrados: Uma caracterização. In: Dias, B.F.S. (Org.). Alternativas de desenvolvimento dos Cerrados: Manejo e Conservação dos recursos naturais renováveis. Brasília: Fundação Pró-Natureza / Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. p. 11-25.

DOBOS, E.; MICHELI, E.; BAUMGARDNER, M. F.; BIEHL, L.; HELT, T. (2000). Use of combined digital elevation model and satellite data for regional soil mapping. Geoderma, 97: 367-391.

EITEN, G. 1972. The Cerrado Vegetation of Brazil. Bot. Rev. 38: 201-341.

FARIAS, M.F.R.; CARVALHO, A.P.; MARTINS, E.S.; CARVALHO JÚNIOR, O.A.; REATTO, A.; GOMES, R.A.T. (2008) Levantamento de Solos do Parque Nacional de Brasília, escala 1:50.000. Planaltina, DF: Embrapa Cerrados, 66 p. (Boletim de Pesquisa e Desenvolvimento 220).

FERRANTE, J.E.T.; RANCAN, L.; BRAGA NETTO, P. (2001). Meio Físico: Clima In: Fernando Oliveira Fonseca. (Org.). Olhares sobre o Lago Paranoá. Brasília: Secretaria de Meio Ambiente e Recursos Hídricos.

FREITAS-SILVA F.H. & CAMPOS J.E.G (1998) Hidrogeologia do Distrito Federal. In: IEMA. Inventário Hidrogeológico e dos Recursos Hídricos Superficiais do Distrito Federal, vol. IV. Brasília: IEMA/SEMATEC/UnB, 85 p.

FREITAS-SILVA, F.H.; CAMPOS, J.E.G. (2001) Meio Físico da Bacia do Rio Paranoá. In: Fernando Oliveira Fonseca. (Org.). Olhares sobre o Lago Paranoá. 1 ed. Brasília: SEMARH, v. 1, p. 55-76.

GESSLER, P.E.; CHADWICK, O.A.; CHAMRAN, F.; ALTHOUSE, L.; HOLMES, K. (2000). Modeling soil-landscape and ecosystem properties using terrain attributes. Soil Science Society of America Journal, 64: 2046–2056.

GESSLER, P.E.; MOORE, I.D.; MCKENZIE, N.J.; PYAN, P.J. (1995) Soil-landscape modeling and spatial prediction of soil attributes. International Journal of Geographical Information Systems, 9: 421–432.

GIASSON, E.; SARMENTO, E. C.; WEBER, E.; FLORES, C. A.; HASENACK, H. 2011. Decision trees for digital soil mapping on subtropical basaltic steeplands. Scientia Agricola, 68 (2): 167-174.

GRINAND, C.; ARROUAYS, D.; LAROCHE, B.; MARTIN, M. P. (2008) Extrapolating regional soil landscapes from an existing soil map: Sampling intensity, validation procedures, and integration of spatial context. Geoderma, 143: 180–190.

HERMUCHE P.M.; GUIMARÃES R.F.; CARVALHO A.P.F.; MARTINS, E.S.; FUKS, S.D.; CARVALHO JÚNIOR, O.A. Processamento digital de imagens morfométricas para subsidiar o mapeamento pedológico. In: Simpósio Brasileiro de Sensoriamento Remoto, 11., 2003, Belo Horizonte. Anais do SBSR. São José dos Campos: INPE, p. 123-130.

HUDSON, B.D. (1992) The soil survey as paradigm-based science. Soil Science Society of America Journal, 56: 836-841.

HUTCHINSON, M.F. (1988) Calculation of hydrologically sound digital elevation models. In: International Symposium on Spatial Data Handling, 3., 1988, Sydney. Proceedings. Columbus, Ohio: International Geographical Union. p. 117-133.

KOROLYUK, T.V.; SHCHERBENKO, H.V., 1994. Compiling soil maps on the basis of remotely sensed data digital processing: soil interpretation. International Journal Remote Sensing, 15: 1379–1400.

KOZAR, B.; LAWRENCE, R.; LONG, D.S. (2002) Soil phosphorus and potassium mapping using a spatial correlation model incorporating terrain slope gradient. Precision Agriculture, 3: 407–417.

LAGACHERIE, P., HOLMES, S., 1997. Addressing geographical data errors in a classification tree soil unit prediction. International Journal of Geographical Information Science, 11: 183– 198.

LAGACHERIE, P.; LEGROS, J.P.; BURROUGH, P.A., 1995. A soil survey procedure using the knowledge of soil pattern established on a previously mapped reference area. Geoderma, 65: 283–301.

LATORRE, M.L.; CARVALHO JUNIOR, O. A.; SANTOS, J.R.; SHIMABUKURO, Y.E. (2007). Integração de dados de sensoriamento remoto multiresoluções para a representação da cobertura da terra utilizando campos contínuos de vegetação e classificação por arvores de decisão. Revista Brasileira de Geofísica, 25: 63-74.

LEE, K.-S.; LEE, G.B.; TYLER, E.J. (1988b) Thematic Mapper and digital elevation modeling of soil characteristics in hilly terra. Soil Science Society of America Journal, 52: 1104–1107.

LEE, K.-S.; LEE, G.B.; TYLER, E.J. (1988a) Determination of soil characteristics from Thematic Mapper data of a cropped organic–inorganic soil landscape. Soil Science Society of America Journal, 52: 1100–1104

LEVINE, E.R.; KNOX, R.G.; LAWRENCE, W.T. (1994) Relationships between soil properties and vegetation at the Northern Experimental Forest, Howland, Maine. Remote Sens. Environ. 47: 231–241.

LOBELL, D.B.; ASNER, G.P. (2002) Moisture effects on soil reflectance. Soil Science Society of America Journal, 66: 722–727.

LOZANO-GARCIA, D.F., FERNANDEZ, R.N., JOHANNSEN, C. (1991). Assessment of regional biomass–soil relationships using vegetation indexes. IEEE Trans. Geosci. Remote Sens. 29: 331–339.

MCBRATNEY, A.B.; MENDONCA SANTOS, M.L.; MINASNY, B. (2003) On digital soil mapping. Geoderma, 117: 3– 52.

MCKENZIE, N.J.; RYAN, P.J. (1999) Spatial prediction of soil properties using environmental correlation. Geoderma, 89: 67–94.

MCKENZIE, N.J.; AUSTIN, M.P. (1993) A quantitative Australian approach to medium and small scale surveys based on soil stratigraphy and environmental correlation. Geoderma, 57: 329-355.

MCKENZIE, N.J.; GESSLER, P.E.; RYAN, P.J.; O’CONNELL, D.A. (2000) The role of terrain analysis in soil mapping. In: WILSON J.P. & GALLANT J.C. (Ed.). Terrain analysis: Principles and applications. New York: John Wiley & Sons Ltd. p. 245–265.

MOORE, I.D.; GESSLER, P.E.; NIELSEN, G.A.; PETERSON, G.A., (1993) Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 57: 443–452.

MORAN, J.M.; BUI, E.N. (2002) Spatial data mining for enhanced soil map modelling. International Journal of Geographical Information Science, 16 (6): 533–549.

MORAN, M.S.; INOUE, Y.; BARNES, E.M. (1997) Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ., 61: 319–346.

NOVAES PINTO, M. (1994) Caracterização geomorfológica do Distrito Federal. In: Novaes Pinto, M. (org).Cerrado: caracterização, ocupação e perspectivas. Brasília. Ed. UnB/SEMATEC, Brasília/DF.

ODEH, I.O.A.; McBRATNEY, A.B.; CHITTLEBOROUGH, D.J. (1992) Fuzzy-c-means and kriging for mapping soil as a continuous system. Soil Science Society of America Journal, 56: 1848-1854.

ODEH, I.O.A.; MCBRATNEY, A.B.; CHITTLEBOROUGH, D.J. (1994) Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma 63: 197–214.

QUINN, P.F.; BEVEN, P.; CHEVALLIER, P.; PLANCHON, O. (1991). The Prediction of Hillslope Flow Paths for Distributed Hydrological Modeling Using Digital Terrain Models. Hydrological Processes, 5: 59-79.

RAWLS, W.J.; PACHEPSKY, Y.A. (2002) Using field topographic descriptors to estimate soil water retention. Soil Science, 167: 423– 435.

REATTO, A.; MARTINS, E.S.; FARIAS, M.F.R.; SILVA, A.V.; CARVALHO JÚNIOR, O.A. (2004) Mapa pedológico Digital – SIG Atualizado do Distrito Federal Escala 1:100.000 e uma síntese do texto explicativo. Planaltina: Embrapa Cerrados, 31 p.

RIBEIRO, J.F.; WALTER, B.M.T. (1998) Fitofisionomias do bioma Cerrado. In: SANO, S.M. & ALMEIDA, S.P. (Eds.). Cerrado: ambiente e flora. Planaltina: EMBRAPA-CPAC, p. 89-166.

RYAN, P.J.; MCKENZIE, N.J.; O’CONNELL, D.; LOUGHHEAD, A.N.; LEPPERT, P.M.; JACQUIER, D.; ASHTON, L. (2000) Integrating forest soils information across scales: spatial prediction of soil properties under Australian forests. Forest Ecology and Management, 138: 139– 157.

SARMIENTO, G. (1984) The ecology of neotropical savannas. Cambridge: Harvard University Press. 256p.

SCULL, P.; FRANKLIN, J.; CHADWICK, O.A. (2005) The application of classification tree analysis to soil type prediction in a desert landscape. Ecological Modeling, 181: 1–15.

SCULL, P.; FRANKLIN, J.; CHADWICK, O.A.; MCARTHUR, D. (2003) Predictive soil mapping: a review. Progress in Physical Geography, 27: 171– 197.

SILVA JUNIOR, J.F.; SIQUEIRA, D.S. ; MARQUES JÚNIOR, J. ; SIQUEIRA, D.S.; PEREIRA, G.T. (2012) Classificação numérica e modelo digital de elevação na caracterização espacial de atributos dos solos. Revista Brasileira de Engenharia Agrícola e Ambiental (Impresso), 16: 415-424.

SKIDMORE, A.K.; RYAN, P.J.; DAWES, W.; SHORT, D.; O’LOUGHLIN, E. (1991) Use of an expert system to map forest soils from a geographical information system. International Journal of Geographical Information Science, 5: 431– 445.

WALKER, B.H. (1987) Determinants of tropical savannas. Paris, IUBS Monograph Series, 156 p.

SHI, X.; ZHU, A-X.; BURT, J. E.; QI, F.; SIMONSON, D. (2004). A Case-based Reasoning Approach to Fuzzy Soil Mapping. Soil Science Society of America Journal, 68: 885-89.

ZHU, A.X. (1999) A personal construct-based knowledge acquisition process for natural resource mapping using GIS. International Journal of Geographical Information Science, 13 (2): 119–141.

ZHU, A. X. (2000). Mapping soil landscape as spatial continua: the neural network approach. Water Resources Research, 36: 663-677.

ZHU, A. X.; HUDSON B.; BURT, J.; LUBICH, K.; SIMONSON, D. (2001) Soil mapping using GIS, Expert knowledge, and fuzzy logic. Soil Science Society of America Journal, 65: 1463–1472.

ZUSHI, K. (2006) Spatial distribution of soil carbon and nitrogen storage and forest productivity in a watershed planted to Japanese cedar (Cryptomeria japonica D. Don). Journal of Forest Research, 11:351–358.

Published

2022-01-21

Issue

Section

Paper

How to Cite

INTEGRATION OF MORPHOMETRIC ATTRIBUTES AND REMOTE SENSING IN PEDOLOGICAL CARTOGRAPHY IN THE NATIONAL PARK BRASILIA, FEDERAL DISTRICT. (2022). Space and Geography Journal, 18(1), 217-243. https://doi.org/10.26512/2236-56562015e40051