USE OF THE SPECTRAL CLASSIFIER CORRELATION MAPPER IN TM-LANDSAT IMAGES
DOI:
https://doi.org/10.26512/2236-56562002e39709Keywords:
Spectral Mixture, Endmembers, Spectral Correlation MapperAbstract
In this work a methodology is proposed for the analysis of spectral mixture from TM-Landsat data. The selected area in the image embraced preserved and agricultural areas in Brasília, DF. The adopted procedure for endmembers’s (pure pixels) detection was the same used for the hyperespectrals data treatment, with the specific adaptations. Initially was made a conversion of the Digital Numbers for reflectance values and after, the identification of the endmembers of the selected area. The Digital Numbers conversion in reflectance values allowed the comparison of the spectra obtained with the spectral libraries, which could help in the identification. For that area, the identified pure members were: green vegetation, non-photosynthetically active vegetation, soil and burned. It was used the spectral classifier SCM (Spectral Correlation Mapper) to show the pure members disposition in the image. The use of the endmembers detection procedure before the classification revealed quite interesting because it helped in the samples determination for the classification. Using the analysis of spectral mixture the classification becomes more trustworthy to the pixel conception that can contain more than one class.
References
Adámoli, J.; Macedo, J. Azevedo, L. G.; Netto, J. M. 1897. Caracterização da região dos Cerrado. In: W. J. Goedert (ed.). Solos dos Cerrados: tecnologias e estratégias de manejo. Planaltina: EMBRAPA-CPAC; São Paulo: Nobel, p33-98.
Bentz, C. M. (1990), Avaliação da transformação radiométrica dos dados TM/Landsat – 5 em reflectâncias. Dissertação de Mestrado em Sensoriamento Remoto, INPE, 142p.
Boardman, J. W. & Kruse, F. A. (1994), Automated spectral analysis: A geologic example using AVIRIS data, noth Grapevine Mountais, Nevada: in Proceedings ERIM Tenth Thematic Coference on Geologic Remote Sensing, Environmetal Research Institute of Michigan, Ann Arbor, MI, I: 407-418.
Carvalho Júnior, O. A. & Menezes, P. R. (2000), Spectral Correlation Mapper (SCM): an improving Spectral Angle Mapper. In: Proc. Nineth JPL Airborne Earth Science Workshop. JPL Publ. 00-18, Jet Propulsion Laboratory, Pasadena, CA, Vol. 1, p. 65- 74.
Fundação Instituto Brasileiro de Geografia e Estatística (FIBGE), 1995. Zoneamento Ambiental da bacia do córrego Taquara, DF. Vol. 1. Goiânia.
Horwitz, H. M., Lewis J. T. & Pentland, A. P. (1975), Estimating proportions of objects from multispectral scanner data. Final Report, NSAS Contract NAS9-14123, NASACR-141862, 108p.
Kruse, F. A. (1996), Geologic mapping using combined optical remote sensing and SIRC/X-SAR data. In: Eleventh Thematic Conference and Workshops on Applied Geologic Remote Sensing, Las Vegas, Nevada. Vol. II, pp. 142-150.
Kruse, F. A.; Huntington, J. H. & Green, R. O. (1996), Results from the 1995 AVIRIS Geology Group Shoot.In: Proceedings 2nd International Airborne Remote Sensing Conference and Exhibition, Vol 1, p. 211-220.
Nelson, R. F. (1985), Reducing Landsat MSS scene variability. Photogrammetric Engineering of Remote Sensing, 51 (5): 583-593.
Pereira, B. A. da S.; Furtado, P. P.; Mendonça, R. C. de e Rocha, G. I. 1989. Reserva Ecológica do IBGE (Brasília, DF): aspectos históricos e fisiográficos. Boletim da Fundação Brasileira para Conservação da Natureza, Rio de janeiro, n. 24, p30-43.
Ribeiro, J. F. & Walter, B. M. T. (1998), Fitofisionomias do Bioma Cerrado. In: S. M. Sano & S. P. Almeida (Org.), Cerrado: Ambiente e Flora.EMBRAPA-CPAC, Planaltina, 556p.
Richardson, A. J. Wiegand, C. L., Gausman, H. W., Cuellar, J. A. & Genermann, A. H. (1975), Plant, soil and shadow reflectance components of row crops. Photogrammetric Engineering of Remote Sensing, 41:1401-1407.
Singer, R. & McCord, T. B. (1979). Mars: large scale mixing of bright and dark surface materials and implication for analysis of spectral reflectance. In: Proc. 10th Lunar Planet Sci. Conf. p. 1835-1848
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.