COMPARAÇÃO DOS MÉTODOS GREEN E ATREM PARA CORREÇÃO ATMOSFÉRICA DE IMAGENS HIPERESPECTRAIS AVIRIS
DOI:
https://doi.org/10.26512/2236-56562002e39706Palavras-chave:
sensoriamento remoto, correção atmosférica, hiperespectralResumo
O presente trabalho tem como propósito realizar uma análise comparativa dos métodos Green e ATREM para a correção atmosférica de imagens do sensor hiperespectral AVIRIS. Também foi avaliada a aplicação do método complementar EFFORT, que proporciona uma filtragem de eventuais resíduos atmosféricos verificados após a correção. Verificou-se que o método Green apresentou melhores resultados em comparação ao método ATREM. O emprego do EFFORT permitiu uma melhora dos espectros do ATREM, porém apresentou apenas uma melhora moderada sobre os resultados do método Green.
Referências
Berk, A., Bernstein, L. S. & Robertson, D. C. (1989). MODTRAN: A moderate resolution model for LOWTRAN7, Final report, GL-TR-0122, AFGL,Hanscomb AFB, MA, 42p.
Boardman, J. W. (1998). Post-ATREM polishing of AVIRIS apparent reflectance data using EFFORT: a lesson in accuracy versus precision, in: Summaries of the Seventh JPL Airborne Earth Science Workshop, JPL Publ. 97-21, Jet Propulsion Laboratory, Pasadena, CA, Vol. 1, p.53.
Carrere, V. & Conel, J. E. (1993). Recovery of atmospheric water vapor total column abundance from imaging spectrometer data around 940nm sensitivity analysis and application to Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) data, Remote Sens. Environ. 44:179-204.
Carvalho Júnior, O. A. (2000). Avaliação e Desenvolvimento de Métodos de Processamento de Imagens Hiperespectrais – Análise em Depósito de Níquel (Niquelândia, GO). Tese de doutorado, Institudo de Geociências, Universidade de Brasília, Brasília, 262p.
Clark, R. N., Swayze G. A., Heidebrecht, K. B., Green, R. O. & Goetz, A. F. H. (1995). Calibration to surface reflection of terrestrial imaging spectrometry data: comparison of methods, in: Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, JPL Publ. 95-1, Jet Propulsion Laboratory, Pasadena, CA, Vol. 1 p.41-42.
Conel, J. E., Green, R. O., Alley, R.E, Bruegge, C. J., Carrere, V., Margolis, J. S., Vane, G., Chrien, T. G., Slater, S. F., Biggar, S. F., Teillet, P. M., Jackson, R. D. & Moran. M. S. (1988). In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectometer (AVIRIS), in: Proceedings SPIE Conference on Recent Advances on Sensors, Radiometry and Data Processing for Remote Sensing, 924, 168-178.
ENVI ®. (1999). ENVI Extensions User’s Guide, Better Solutions Consulting Limited Liability Company. Lafayette, Colorado, USA, 9p.
Gao, B.-C. & Goetz, A. F. H. (1990). Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data, J. Geophys. Res., 95, 3549-3564.
Gao, B.-C., Heidebrecht, K. B. & Goetz, A. F. H. (1993). Derivation of scaled surface reflectances from AVIRIS data. Remote Sens. Environ. 44:165-178.
Gao, B.-C., Hiedebrecht, K. B., & Goetz, A. F. H. (1999). Atmosphere Removal Program (ATREM). User’s Guide version 3.1. 101p.
Goetz, A. F. H., Heidebrecht, K. B. & Chrien, T. G. (1995). High Accuracy In-Flight Wavelength Calibration of Imaging Spectrometry Data, in: Proc. Fifth Annual Airborne GeoScience Workshop, JPL Publ. 95-1, Jet Propulsion Laboratory, Pasadena, CA, Vol.1, p. 67-70.
Green, R. O. (1990). Retrieval of Reflectance from Calibrated Radiance Imagery Measured by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) for Lithological Mapping of Clark Mountains, California, in: Proceedings of the Second Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Publ. 90-54, Jet Propulsion Laboratory, Pasadena, CA, Vol. 1, p. 167-175.
Green, R. O. & Conel, J. E. (1995). Movement of Water Vapor in The Atmosphere Measured by an Imaging Spectrometer at Roger Dry Lake, CA, in: Proc. Fifth Annual Airborne GeoScience Workshop, JPL Publ. 95-1, Jet Propulsion Laboratory, Pasadena, CA, Vol. 1, p. 79-82.
Green, R. O., Conel, J. E., Margolis, J. S., Bruegge, J. & Hoover, G. L. (1991). An inversion algorithm for retrieval at atmospheric and leaf water absorption from AVIRIS radiance with compensation for atmospheric scattering, In: Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Publ. 91-28, Jet Propulsion Laboratory, Pasadena, CA, Vol.1, p. 51-61.
Green, R. O., Conel, J. E. & Roberts, D. A. (1995). Measurement of Atmospheric Water Vapor, Leaf, Liquid Water and Reflectance with AVIRIS in the Boreal Exosystem – Atmosphere Study: Initial Results, in: Proc. Fifth Annual Airborne GeoScience Workshop, JPL Publ. 95-1, Jet Propulsion Laboratory, Pasadena, CA, Vol. 1, p.87-90.
Green, R. O., Eastwood, M. L., Sarture, C. M., Chrien, T. G., Aronsson, M., Chippendale, B. J., Faust, J. A., Pavri, B. E., Chovit, C. J., Solis, M., Olah, M. R. & Williams O. (1998). Imaging Spectroscopy and the Airborne Visible / Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ. 65:227-248
Green, R. O., Conel, J. E. &. Roberts, D. A. (1993). Estimation of Aerosol Optical Depth, and Addicional Atmospheric Parameters for the Calculation of Apparent Reflectance from Radiance Measured by the Airborne Visible/Infrared Imaging Spectrometer, in: Proc. Fourth Annual Airborne GeoScience Workshop, JPL Pub. 93-26, Jet Propulsion Laboratory, Pasadena, CA, Vol.1, p.83-86.
Green, R. O., Vane, G. & Conel, J. E. (1988). Determination of aspects of the in-flight spectral, radiometric, spatial and signal to noise performance of Airborne Visible/ Infrared Imaging Spectrometer over Mountain Pass, CA, in: Proceeding of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Pub. 88-38, Jet Propulsion Laboratory, Pasadena, CA, Vol.1, p.162-184.
Kaufman, Y. J., Hobbs, P. V., Kirchoff, V. W. J. H., Artaxo, P., Remer, L. A., Olben, B. N., King, M. D., Ward, D. E., Prins, E. M., Longo, K. M., Mattos, L. F., Nobre, C. A., Spinhirne, J. D., Ji, Q., Thompson, A. M., Gleason, J. F., Christopher, S. A. & Tsay S.- C. (1998). Smoke, Clouds and Radiation-Brazil (Scar-B) experiment. J. Geophys. Res., Vol. 103, No. D24. p.31.783-31.808.
Kneizys, F. X., Shettle, E. P. & Abreu, L. W. (1988). Users guide to LOWTRAN7, AFGLTR-8-0177, Air Force Geophys. Lab. Bedford, MA, 136p.
Latorre, M. F. (1998). Utilização de um método de correção atmosférica para o processamento de dados hiperespectrais do sensor AVIRIS em regiões tropicais. Tese de Mestrado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos (SP), Brasil, 202p.
Malkmus, W. (1967). Random Lorentz band model with exponential-tailed S line intensity distribution function, J. Opt. Soc. Am., 57: 323-329.
Tanré, D., Deroo, C., Duhaut, P., Herman, M., Morcrette, J. J., Perbos, J. & Deschamps, P. Y. (1990). Description of a Computer Code to Simulated the Satellite Signal in the Solar Spectrum: The 5S Code. Int. J. Remote Sens., 11(4):659-668.
Vane, G., Chrisp, M., Enmark, H., Macenka, S. & Solomon, J. (1984). Airborne Visible/ Infrared Imaging Spectrometer (AVIRIS): an advanced tool for earth remote sensing, in: Proc. Int. Geosci. Remote Sensing Symp., SP215, IEEE, New York, p. 751-757.
Vane, G. (1987). First results from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), Proc. Soc. Photo-Opt. Instrum. Eng. (SPIE), 834:166-174.
World Meterological Organization - WMO. (1986). A preliminary cloudless standard atmosphere for radiotion computation. World Climatic Program, WCP-112, WMO/ TD no 24
Downloads
Publicado
Edição
Seção
Licença
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.