Multi Band Metamaterials Absorber for Stealth Applications
DOI:
https://doi.org/10.26512/lstr.v11i1.22928Keywords:
Metamaterial. Perfect absorber. Radar stealth. Microwave.Abstract
Purpose ”“ This paper presents a simulation study using CST microwave studio computer software.
Methodology/approach/design ”“ A simple structure based on metamaterial are used to construct a perfect metamaterial absorber. It is made of just one uncompleted square patch copper placed on top of dielectric layer to separate it from a copper ground plate.
Findings ”“ This design provides four perfect absorption regions with absorption peaks of an average of 93%. The characteristic study of parameters such as copper dimensions and dielectric properties led to an expected result in the synthesis of resonant frequency.
Practical implications ”“ The multi-band absorption can be used in energy harvesting applications, protection from the effects of electromagnetic waves, radar stealth technology and thermal imaging. Moreover, the experimental results show good agreement with CST simulation.
References
JI, S.; Jiang, C.; Zhao, J.; Zhang, X.; He, Q. Design of a polarization-insensitive triple-band metamaterial absorber. Optics Communications, v. 432, p. 65-70, 2019.”
SCHURIG, D.; Mock, J. J.; Justice, B. J.; Cummer, S. A.; Pendry, J. B.; Starr, A. F.; Smith, D. R. Metamaterial electromagnetic cloak at microwave frequencies. Science, v. 314, n. 5801, p. 977-980, 2006”.
AL-BADRI, K. S.; Cinar, A.; Kose, U.; Ertan, O.; & Ekmekci, E. Monochromatic Tuning of Absorption Strength Based on Angle-Dependent Closed-Ring Resonator-Type Metamaterial Absorber. IEEE Antennas and Wireless Propagation Letters, v. 16, p. 1060-1063, 2017.”
SMITH, D. R.; Pendry, J. B.; M. Wiltshire, C. K. Metamaterials and negative refractive index. Science, v. 305 n. 5685, p. 788”“792, 2004.
PENDRY, J. B.; Holden, A. J.; Robbins, D. J.; Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Techn., v. 47, n. 11, p. 2075”“2084, 1999.
WANG, B. X.; Wang, L. L.; Wang, G. Z.; Wang, L.; Zhai, X.; Li, X. F.; Huang, W. Q. A simple nested metamaterial structure with enhanced bandwidth performance. Optics Communications, v. 303, p. 13-14, 2013”.
FARUK, A.; Sabah, C. Absorber and sensor applications of complimentary H-shaped fishnet metamaterial for sub-terahertz frequency region. Optik, 177, 64-70”, 2019.
DOLLING, G.; Enkrich, C.; Wegener, M.; Zhou, J. F.; Soukoulis, C. M.; Linden, S. Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Optics letters, v. 30, n. 23, p. 3198-3200, 2005.
YU, P.; Besteiro, L. V.; Huang, Y.; Wu, J.; Fu, L.; Tan, H. H.; Wang, Z. Broadband metamaterial absorbers. Advanced Optical Materials”. v. 1800995, p. 1-32, 2018.
LANDY, N. I.; Sajuyigbe, S. J.; Mock, J.; Smith, D. R.; Padilla, W. J. Perfect metamaterial absorber. Physical review letters., v. 100, n. 20, 2008.
SHCHEGOLKOV, D. Y.; Azad, A. K.; Ohara, J. F.; Simakov, E. I. Perfect subwavelength fishnetlike metamaterialbased film terahertz absorbers. Physical review B, v. 82, n. 20, 2010.
HUANG, L.; Chowdhury, D. R.; Ramani, S.; Reiten, M. T.; Luo, S. N.; Azad, A. K.; Chen, H. T. Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers. Applied Physics Letters, v. 101, n. 10, 2012.
CAO, H.; Shan, M.; Chen, T.; Lei, J.; Yang, L.; Tan, X. Triple-Band Polarization-Independent Ultrathin Metamaterial Absorber. Progress In Electromagnetics Research, v. 77, p. 93-102, 2019.”
SINGH, A. K.; Abegaonkar, M. P.; Koul, S. K. (). A Triple Band Polarization Insensitive Ultrathin Metamaterial Absorber for S-C-and X-Bands. Progress In Electromagnetics Research, v. 77, p. 187-194, 2019.”
FERNÁNDEZ ÁLVAREZ, H.; de Cos Gómez, M. E.; Las-Heras, F. A thin c-band polarization and incidence angle-insensitive metamaterial perfect absorber. Materials, v. 8, n. 4, p. 1666-1681, 2015.
LANDY, N. I.; Bingham, C. M.; Tyler, T.; Jokerst, N.; Smith, D. R.; Padilla, W. J. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. physical review B, v. 79, n. 12, 2009.
AL-BADRI, K. S. L.; Karacan, N.; Kucukoner, E. M.; Ekmekci, E. Sliding planar conjoined cut-wire-pairs: A novel approach for splitting and controlling the absorption spectra. Journal of Applied Physics, v. 124, n. 10, 2018.”
WANG, B. X.; Wang, L. L.; Wang, G. Z.; Huang, W. Q.; Li, X. F.; Zhai, X. A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber. Applied Physics Express, v. 7, n. 8, 2014.
GRANT J.; Ma, Y.; Saha, S.; Khalid, A.; Cumming, D. R. S. Polarization insensitive, broadband terahertz metamaterial absorber. Optics letters, v. 36, n. 17, p. 3476”“3478, 2011.
WANG, B. X.; Wang, L. L.; Wang, G. Z.; Huang, W. Q.; Li, X. F.; Zhai, X. Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photon. Technol. Lett., v. 26, n. 2, p. 111”“114, 2014.
AL-BADRI, K. S. L. Very High Q-Factor Based On G-Shaped Resonator Type Metamaterial Absorber. Ibn AL-Haitham Journal For Pure and Applied Science, p. 160-167. 2018.
HU, F.; Wang, L.; Quan, B.; Xu, X.; Li, Z.; Wu, Z.; Pan, X. Design of polarization insensitive multiband terahertz metamaterial absorber. Journal of Physics D: Applied Physics, v. 46, n. 19, p. 195103, 2013.
AL-BADRI, K. S. L. Electromagnetic broad band absorber based on metamaterial and lumped resistance. Journal of King Saud University-Science 2018.”
DONG, Y.; Itoh, T. Metamaterial-based antennas. Proceedings of the IEEE, v. 100, n. 7, p. 2271-2285.” 2012.
SELVANAYAGAM, M.; Eleftheriades, G. V. A compact printed antenna with an embedded double-tuned metamaterial matching network. IEEE Transactions on Antennas and Propagation, v. 58, n. 7, p. 2354-2361,” 2010.
SEN, G.; Islam, S. N.; Banerjee, A.; Das, S. Broadband perfect metamaterial absorber on thin substrate for X-band and Ku-band applications. Progress In Electromagnetics Research, v. 73, p. 9-16, 2017.
LUO, H.; Cheng, Y. Z. Ultra-Thin Dual-Band Polarization-Insensitive and Wide-Angle Perfect Metamaterial Absorber Based on a Single Circular Sector Resonator Structure. Journal of Electronic Materials, v. 47, n. 1, p. 323-328, 2018.”
LIU, Z.; Li, H.; Zhan, S.; Cao, G.; Xu, H.; Yang, H.; Xu, X. PIT-like effect in asymmetric and symmetric C-shaped metamaterials. Optical Materials, v. 35, n. 5, p. 948-953, 2013.
Jafari, F. S.; Naderi, M.; Hatami, A.; Zarrabi, F. B.; Microwave Jerusalem cross absorber by metamaterial split ring resonator load to obtain polarization independence with Triple band application. AEU-International Journal of Electronics and Communications, v. 101, p. 138”“144, 2019.”
YOO, Y. J.; Kim, Y. J.; Hwang, J. S.; Rhee, J. Y.; Kim, K. W.; Kim, Y. H.; Lee, Y. P. Triple-band perfect metamaterial absorption, based on single cut-wire bar. Applied Physics Letters, v. 106, no. 7, 2015.”
XU, J. P.; Wang, J. Y.; Yang, R. C.; Zhang, W. M. Switchable and Flexible Single-I Dual-Band Metamaterial Absorber. In 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), IEEE.” p. 1-3, May, 2018.
Downloads
Published
Issue
Section
License
By submitting this paper to the Law, State and Telecommunications Review,
I hereby declare that I agree to the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0).